TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
2−n
bằng
n+1
B. 0.
Câu 1. Giá trị của giới hạn lim
A. 1.
C. −1.
Câu 2. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −2.
B. x = −8.
C. x = 0.
D. 2.
D. x = −5.
Câu 3. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 3
a3 6
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
24
24
8
48
Câu 4. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 50, 7 triệu đồng.
C. 70, 128 triệu đồng. D. 3, 5 triệu đồng.
Câu 5. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 8.
C. 6.
D. 10.
Câu 6. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 3 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 9 lần.
Câu 7. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
Câu 8. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
B. .
C. 6.
D. 9.
A. .
2
2
Câu 9. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 27.
C. 12.
D. 3.
Câu 10. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
3
4a 3
2a3 3
5a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
3
3
3
2
Câu 11. Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
√
A. |z| = 10.
B. |z| = 17.
C. |z| = 10.
D. |z| = 17.
Câu 12. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e + 1.
B. 2e.
C. .
e
D. 3.
d = 60◦ . Đường chéo
Câu 13. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
2a3 6
4a3 6
a3 6
3
A.
.
B. a 6.
C.
.
D.
.
3
3
3
Trang 1/10 Mã đề 1
Câu 14. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).
B. Cả ba mệnh đề.
C. (II) và (III).
D. (I) và (II).
Câu 15. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −15.
C. −9.
D. −5.
2
Câu 16. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
Câu 17. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = 1 + ln x.
C. y0 = x + ln x.
D. y0 = 1 − ln x.
Câu 18. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a
√
a3 15
a3 5
a3
a3 15
.
B.
.
C.
.
D.
.
A.
25
5
25
3
Câu 19. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .
B. −2e2 .
C. −e2 .
D. 2e2 .
! x3 −3mx2 +m
1
nghịch biến trên
Câu 20. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
khoảng (−∞; +∞)
A. m = 0.
B. m ∈ R.
C. m , 0.
D. m ∈ (0; +∞).
1
Câu 21. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 3.
C. 2.
D. 4.
Câu 22. Dãy
!n số nào sau đây có giới
!n hạn là 0?
1
5
A. − .
B.
.
3
3
!n
5
C.
.
3
!n
4
D.
.
e
Câu 23. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.423.000.
B. 102.424.000.
C. 102.016.000.
D. 102.016.000.
Câu 24. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
Trang 2/10 Mã đề 1
!
un
C. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
2
2
Câu 25. [3-c]
số f (x) = 2sin x + 2cos x √
lần lượt là
√ Giá trị nhỏ nhất và giá trị lớn nhất của hàm √
B. 2 và 3.
C. 2 2 và 3.
D. 2 và 3.
A. 2 và 2 2.
Câu 26. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 30.
C. 20.
D. 12.
Câu 27. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
A. a 6.
.
C. a 3.
B.
D. 2a 6.
2
Câu 28. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 10.
C. 2.
D. 1.
n−1
Câu 29. Tính lim 2
n +2
A. 1.
B. 2.
C. 0.
D. 3.
Câu 30. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 8.
C. 12.
D. 20.
[ = 60◦ , S O
Câu 31. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ A đến (S√BC) bằng
√ với mặt đáy và S O = a.
√
a 57
2a 57
a 57
.
B.
.
C.
.
D. a 57.
A.
17
19
19
Câu 32. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích khối chóp S .ABCD là √
√
√
√
a3 3
2a3 3
a3 3
3
.
B. a 3.
.
D.
.
A.
C.
3
6
3
!2x−1
!2−x
3
3
≤
là
Câu 33. Tập các số x thỏa mãn
5
5
A. (−∞; 1].
B. (+∞; −∞).
C. [3; +∞).
D. [1; +∞).
Câu 34. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 0.
B. 2.
Câu 35. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 − 2
A. un =
.
B.
u
=
.
n
n2
5n − 3n2
C. +∞.
C. un =
D. 1.
n2 + n + 1
.
(n + 1)2
D. un =
1 − 2n
.
5n + n2
ln x p 2
1
Câu 36. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
1
8
8
A. .
B. .
C. .
D. .
9
9
3
3
Câu 37. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
13
5
23
A.
.
B.
.
C. − .
D. −
.
25
100
16
100
Câu 38. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
A. 2.
B. .
C. 1.
2
D.
ln 2
.
2
Trang 3/10 Mã đề 1
Câu 39. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. 3.
C. Vô số.
D. 2.
Câu 40. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 41. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Cả hai câu trên sai.
C. Chỉ có (I) đúng.
Câu 42. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 3.
B. 5.
C. 1.
2
x − 3x + 3
đạt cực đại tại
Câu 43. Hàm số y =
x−2
A. x = 1.
B. x = 0.
C. x = 2.
D. Chỉ có (II) đúng.
D. 2.
D. x = 3.
Câu 44. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. [1; +∞).
C. (−∞; −3].
D. [−3; 1].
√
x2 + 3x + 5
Câu 45. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. − .
B. .
C. 1.
D. 0.
4
4
1
Câu 46. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. −2 ≤ m ≤ −1.
C. (−∞; −2] ∪ [−1; +∞). D. (−∞; −2) ∪ (−1; +∞).
Câu 47. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.
√
√
√
√
5 13
A. 26.
B. 2 13.
C.
.
D. 2.
13
Câu 48. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình chóp.
C. Hình tam giác.
D. Hình lăng trụ.
Câu 49. Khối đa diện đều loại {3; 3} có số mặt
A. 4.
B. 2.
C. 3.
D. 5.
Câu 50. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 24 m.
B. 8 m.
C. 12 m.
D. 16 m.
2
2
2
1 + 2 + ··· + n
Câu 51. [3-1133d] Tính lim
n3
2
1
A. .
B. +∞.
C. .
D. 0.
3
3
Trang 4/10 Mã đề 1
Câu 52. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 10 mặt.
C. 8 mặt.
D. 6 mặt.
√
√
Câu 53. Phần thực√và phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt √l
√
A. Phần thực là √2 − 1, phần ảo là −√ 3.
B. Phần thực là 2, √
phần ảo là 1 − √
3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 1 − 2, phần ảo là − 3.
Câu 54. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC√là
√
√ với đáy và S C = a 3.3 √
a3 3
a 3
a3 6
2a3 6
A.
.
B.
.
C.
.
D.
.
2
4
12
9
1 − n2
Câu 55. [1] Tính lim 2
bằng?
2n + 1
1
1
1
B. − .
C. 0.
D. .
A. .
3
2
2
Câu 56. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 5.
B. 7.
C. .
D.
.
2
2
√
Câu 57. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là
√
√
√
3
πa 6
πa3 3
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
6
2
3
Câu 58. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. lim f (x) = f (a).
x→a
x→a
x→a
C. lim+ f (x) = lim− f (x) = a.
x→a
D. f (x) có giới hạn hữu hạn khi x → a.
x→a
Câu 59. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai ngun hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (II) sai.
sai.
1 − 2n
Câu 60. [1] Tính lim
bằng?
3n + 1
1
2
A. .
B. − .
3
3
Câu 61. Phát biểu nào sau đây là sai?
1
A. lim k = 0 với k > 1.
n
C. lim un = c (Với un = c là hằng số).
C. Câu (III) sai.
D. Câu (I) sai.
C. 1.
D.
2
.
3
1
B. lim √ = 0.
n
D. lim qn = 1 với |q| > 1.
Câu 62. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Giảm đi n lần.
B. Tăng lên (n − 1) lần. C. Không thay đổi.
D. Tăng lên n lần.
Câu 63. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = R \ {1; 2}.
C. D = [2; 1].
2
D. D = R.
Trang 5/10 Mã đề 1
3
Câu 64. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e.
B. e2 .
C. e3 .
D. e5 .
Câu 65. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 − 2e
1 + 2e
1 + 2e
.
B. m =
.
C. m =
.
D. m =
.
A. m =
4 − 2e
4e + 2
4 − 2e
4e + 2
9x
Câu 66. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. 2.
B. −1.
C. .
D. 1.
2
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 67. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = e + 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.
Câu 68. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = 22.
C. y(−2) = 2.
D. y(−2) = −18.
!
5 − 12x
Câu 69. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 1.
B. Vô nghiệm.
C. 3.
D. 2.
Câu 70.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
B. 2.
C. 3.
D. 1.
A. 5.
Câu 71. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Câu 72. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối 20 mặt đều.
C. Khối bát diện đều.
D. Khối tứ diện đều.
Câu 73. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 12.
B. 11.
C. 4.
D. 10.
1
Câu 74. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 < m ≤ 3.
C. 2 ≤ m ≤ 3.
D. 0 < m ≤ 1.
Câu 75. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
A.
.
B.
.
C. a 6.
D.
.
6
3
2
log2 240 log2 15
Câu 76. [1-c] Giá trị biểu thức
−
+ log2 1 bằng
log3,75 2 log60 2
A. 3.
B. 1.
C. −8.
D. 4.
Câu 77. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. Không tồn tại.
C. −5.
D. −3.
1
Câu 78. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (−∞; 3).
C. (1; +∞).
D. (−∞; 1) và (3; +∞).
Câu 79. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 2.
C. 5.
D. 3.
Trang 6/10 Mã đề 1
!
1
1
1
Câu 80. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
C. 2.
D. 0.
A. 1.
B. .
2
Câu 81. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 91cm3 .
C. 48cm3 .
D. 64cm3 .
x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 82. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. (2; +∞).
C. [2; +∞).
D. (−∞; 2].
Câu 83. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > 0.
C. m > 1.
D. m > −1.
Câu 84. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. −7, 2.
C. 0, 8.
D. 72.
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 85. Tìm m để hàm số y =
x+m
A. 67.
B. 26.
C. 34.
D. 45.
t
9
Câu 86. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. Vô số.
C. 1.
D. 2.
Câu 87. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 9.
B. 5.
C. 0.
D. 7.
Câu 88. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ phẳng vuông góc với (ABCD). Thể tích khối chóp
√ S .ABCD là
3
3
3
√
a 3
a 3
a 2
.
B.
.
C. a3 3.
D.
.
A.
2
2
4
Câu 89. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 6.
B. −5.
C. −6.
x−2
Câu 90. Tính lim
x→+∞ x + 3
A. 1.
B. −3.
C. 2.
2
D. 5.
2
D. − .
3
Câu 91. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vuông góc
với (S BC).
√
√ Thể tích khối chóp S 3.ABC
√ là
√
3
a 3
a 3
a3 3
a3 2
A.
.
B.
.
C.
.
D.
.
6
4
12
12
Câu 92. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều. C. Khối lập phương.
D. Khối 12 mặt đều.
Câu 93. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Cả hai đều đúng.
C. Cả hai đều sai.
D. Chỉ có (I) đúng.
Trang 7/10 Mã đề 1
Câu 94. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
là
√ hình chóp S .ABCD với
√mặt phẳng (AIC) có diện tích
√
2
2
2
2
a 2
a 5
11a
a 7
.
B.
.
C.
.
D.
.
A.
8
4
16
32
Câu 95. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. [6, 5; +∞).
C. (4; 6, 5].
D. (−∞; 6, 5).
1
a
, với a, b ∈ Z. Giá trị của a + b là
Câu 96. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 1.
B. 2.
C. 7.
D. 4.
Câu 97. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (2; 2).
C. (0; −2).
D. (1; −3).
Câu 98. Phát biểu nào sau đây là sai?
A. lim un = c (un = c là hằng số).
B. lim qn = 0 (|q| > 1).
1
1
C. lim = 0.
D. lim k = 0.
n
n
Câu 99. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 3.
C. 0, 5.
D. 0, 4.
Câu 100. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = 0.
C. m = −3.
D. m = −1.
!
!
!
x
4
1
2
2016
Câu 101. [3] Cho hàm số f (x) = x
+f
+ ··· + f
. Tính tổng T = f
4 +2
2017
2017
2017
2016
.
C. T = 1008.
D. T = 2017.
A. T = 2016.
B. T =
2017
Câu 102. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 8.
C. 6.
D. 12.
1
Câu 103. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.
B. D = (−∞; 1).
C. D = (1; +∞).
D. D = R.
Câu 104. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) = ln 10.
B. f 0 (0) =
.
C. f 0 (0) = 10.
D. f 0 (0) = 1.
ln 10
Câu 105. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. Vô nghiệm.
C. 1.
D. 3.
2
Câu 106. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 3.
B. 2.
C. 5.
D. 4.
√
Câu 107. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
3
a 6
a 2
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
6
6
18
36
2
4
3
Câu 108. Cho z √
là nghiệm của phương trình
√ x + x + 1 = 0. Tính P = z + 2z − z
−1 − i 3
−1 + i 3
A. P =
.
B. P =
.
C. P = 2.
D. P = 2i.
2
2
Câu 109. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim
= .
B. lim [ f (x) − g(x)] = a − b.
x→+∞ g(x)
x→+∞
b
C. lim [ f (x)g(x)] = ab.
D. lim [ f (x) + g(x)] = a + b.
x→+∞
x→+∞
Trang 8/10 Mã đề 1
log 2x
là
Câu 110. [3-1229d] Đạo hàm của hàm số y =
x2
1 − 4 ln 2x
1
1 − 2 ln 2x
A. y0 =
.
B. y0 = 3
.
C. y0 = 3
.
3
2x ln 10
2x ln 10
x ln 10
Câu 111. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 8 mặt.
C. 9 mặt.
D. y0 =
1 − 2 log 2x
.
x3
D. 7 mặt.
Câu 112. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Bốn cạnh.
C. Hai cạnh.
D. Ba cạnh.
√
√
4n2 + 1 − n + 2
Câu 113. Tính lim
bằng
2n − 3
3
A. 2.
B. .
C. +∞.
D. 1.
2
Câu 114. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a
a 3
a
A. a.
B. .
C.
.
D. .
3
2
2
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 115. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
A. lim un = 0.
B. Dãy số un khơng có giới hạn khi n → +∞.
1
C. lim un = .
D. lim un = 1.
2
Câu 116. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√
√ của hàm số. Khi đó tổng
√M + m
A. 8 3.
B. 7 3.
C. 8 2.
D. 16.
Câu 117. Cho hình
√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD), S D = a 5. Thể tích khối
√
√
√ chóp S .ABCD là
3
√
a3 6
a3 5
a 15
3
.
C.
.
D.
.
A. a 6.
B.
3
3
3
Câu 118. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 2, 20 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 22 triệu đồng.
Câu 119. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 30.
C. 20.
Câu 120. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (2; +∞).
C. (0; 2).
D. 12.
D. R.
Câu 121. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
1
ab
A. √
.
B. √
.
C. √
.
D. 2
.
a + b2
a2 + b2
2 a2 + b2
a2 + b2
Câu 122. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 1; 6).
B. ~u = (2; 2; −1).
C. ~u = (1; 0; 2).
D. ~u = (3; 4; −4).
Trang 9/10 Mã đề 1
Câu 123. Bát diện đều thuộc loại
A. {4; 3}.
B. {3; 3}.
C. {5; 3}.
D. {3; 4}.
Câu 124. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B.
.
C.
.
D. a3 .
A.
6
12
24
Câu 125. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
B. 1.
C. 3.
D. .
A. .
2
2
1
Câu 126. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. −3.
B. 3.
C. .
D. − .
3
3
Câu 127. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng là hình lăng trụ đều.
π
Câu 128. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu √
thức T = a + b 3.
√
B. T = 4.
C. T = 3 3 + 1.
D. T = 2.
A. T = 2 3.
Câu 129. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
B. − .
C. − 2 .
D. −e.
2e
e
e
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 130. Giá trị lớn nhất của hàm số y =
m−x
3
A. 0.
B. −5.
C. −2.
D. 1.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
C
1.
2.
3. A
4. A
5.
6.
C
7. A
D
11.
C
B
15. A
17.
10.
D
12.
D
14.
D
16.
B
19.
C
20. A
22.
B
B
C
24.
C
25.
C
18. A
21. A
23.
C
8. A
9.
13.
B
27. A
26.
D
28.
D
29.
C
30.
D
31.
C
32.
D
33.
D
34. A
35.
D
36. A
37.
D
38. A
39.
D
40. A
41. A
42.
D
43. A
44.
D
45. A
46.
47.
C
48.
49. A
51.
C
53. A
55.
B
57.
B
D
59. A
C
50.
D
52.
D
54.
C
56.
C
58.
B
60.
B
61.
D
62. A
63.
D
64.
D
66.
D
68.
D
65.
67.
B
D
1
69. A
70.
B
72.
B
73. A
74.
B
75. A
76.
71.
77.
B
78.
B
79. A
D
82.
83.
D
84.
85.
88.
B
B
D
B
90. A
C
91.
C
86.
C
87. A
C
92.
93. A
94. A
95.
C
96.
97.
C
98.
99.
D
80. A
81.
89.
C
C
B
100. A
B
101.
C
102.
103.
C
104. A
D
106.
105. A
C
107.
109. A
111.
108.
C
110.
C
112.
C
113.
D
D
D
114. A
115.
C
116.
D
117.
C
118.
D
119.
B
121. A
123.
D
120.
C
122.
C
124.
125. A
126.
127. A
128.
129. A
130. A
2
B
D
B