Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (823)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.75 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) =
A. 4.

B. 7.
x+1
bằng
x→−∞ 6x − 2
1
B. .
2

a
1
+
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
C. 1.
D. 2.

Câu 2. Tính lim
A.


1
.
3

C.

1
.
6

D. 1.

Câu 3. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 4. Tính lim

x→+∞

A. 1.

x−2
x+3
B. 2.

Câu 5. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.


C. −3.

2
D. − .
3

C. Khối bát diện đều.

D. Khối 12 mặt đều.

Câu 6. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. [−1; 3].
C. [1; +∞).
D. (−∞; −3].
Câu 7. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.

C. Khối lập phương.

D. Khối bát diện đều.

x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB
√ có độ dài bằng


A. 2.
B. 6.
C. 2 2.
D. 2 3.
2−n
bằng
Câu 9. Giá trị của giới hạn lim
n+1
A. 2.
B. −1.
C. 0.
D. 1.

Câu 8. [3-1214d] Cho hàm số y =

Câu 10. Tứ diện đều thuộc loại
A. {3; 4}.
B. {3; 3}.

C. {5; 3}.

D. {4; 3}.

Câu 11. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là√
3
3
a

4a 3
2a3 3
a3
A.
.
B.
.
C.
.
D.
.
6
3
3
3
1
Câu 12. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 1.
C. 3.
D. 4.
Câu 13. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun √
z.



5 13

A.
.
B. 26.
C. 2.
D. 2 13.
13
Trang 1/10 Mã đề 1


Câu 14. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim+ f (x) = lim− f (x) = a.
x→a
x→a
C. lim f (x) = f (a).
D. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a

x→a

Câu 15. Cho
Z hai hàm yZ= f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0

B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Câu 16. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. n3 lần.
C. 3n3 lần.
D. n2 lần.
Câu 17. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. −3 ≤ m ≤ 3.
C. −2 ≤ m ≤ 2.
D. m ≥ 3.
t
9
Câu 18. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vô số.

B. 1.
C. 0.
D. 2.
2
x −9
Câu 19. Tính lim
x→3 x − 3
A. 3.
B. 6.
C. −3.
D. +∞.
2n + 1
Câu 20. Tìm giới hạn lim
n+1
A. 2.
B. 3.
C. 1.
D. 0.
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
Câu 21. [12210d] Xét các số thực dương x, y thỏa mãn log3
x + 2y
Pmin của P = x√+ y.



2 11 − 3
9 11 − 19
9 11 + 19
18 11 − 29

A. Pmin =
.
B. Pmin =
. C. Pmin =
. D. Pmin =
.
3
9
9
21
Câu 22.
Z Trong các khẳng định sau, khẳng định nào sai? Z
xα+1
α
+ C, C là hằng số.
A.
dx = x + C, C là hằng số.
B.
x dx =
α+1
Z
Z
1
C.
0dx = C, C là hằng số.
D.
dx = ln |x| + C, C là hằng số.
x
Câu 23. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.

B. M = e−2 − 2; m = 1.
−2
C. M = e + 2; m = 1.
D. M = e−2 + 1; m = 1.
Câu 24. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và
√ (A C D) bằng



2a 3
a 3
a 3
A.
.
B.
.
C. a 3.
D.
.
2
3
2
Câu 25. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (0; 1).
C. (−∞; −1) và (0; +∞). D. (−∞; 0) và (1; +∞).
Câu 26. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).

B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Trang 2/10 Mã đề 1


C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
Câu 27. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −9.
B. −12.
C. −15.
D. −5.
1
Câu 28. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (1; +∞).
C. (−∞; 1) và (3; +∞). D. (−∞; 3).

Câu 29. Thể tích của khối lập phương

cạnh
bằng
a
2

3


2a 2

A. 2a3 2.
B.
.
C. V = 2a3 .
D. V = a3 2.
3
Câu 30. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. −1.
C. 6.

D. 1.

Câu 31. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 1.
B. 2.
C. 7.
D. 3.
d = 300 .
Câu 32. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V của khối lăng trụ đã cho. 3 √

a3 3
3a 3
A. V =
.
B. V = 6a3 .
C. V =

.
D. V = 3a3 3.
2
2


Câu 33. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt √l

A. Phần thực là √2, phần ảo là 1 − √
3.
B. Phần thực là 2 −√1, phần ảo là √
3.
C. Phần thực là 2 − 1, phần ảo là − 3.
D. Phần thực là 1 − 2, phần ảo là − 3.
Câu 34. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.

C. Khối bát diện đều.

D. Khối 20 mặt đều.

Câu 35. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. β = a β .
B. aαβ = (aα )β .
C. aα+β = aα .aβ .
D. aα bα = (ab)α .

a
Câu 36.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?

[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
B.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
D.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.

A.

Z

Câu 37. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :

=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x−2 y−2 z−3
x−2 y+2 z−3
A.
=
=
.
B.
=
=
.
2
3
4
2
2
2
x y−2 z−3
x y z−1
C. =

=
.
D. = =
.
2
3
−1
1 1
1
Câu 38. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. [1; 2].
C. (1; 2).

D. (−∞; +∞).
Trang 3/10 Mã đề 1


Câu 39.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
A.
Z
C.

( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
f (x)g(x)dx =

f (x)dx g(x)dx.

k f (x)dx = f

B.
Z
D.

f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.

Câu 40. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 387 m.
C. 25 m.
D. 1587 m.
Z 1
Câu 41. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

A. 1.


B. 0.

x+1
bằng
Câu 42. Tính lim
x→+∞ 4x + 3
1
A. .
B. 1.
4

C.

1
.
4

D.

C.

1
.
3

D. 3.

Câu 43. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. +∞.


B. 1.

C. −∞.

Câu 44.! Dãy số nào sau đây có giới! hạn là 0?
n
n
4
5
A.
.
B. − .
e
3

1
.
2

un
bằng
vn
D. 0.

!n
1
C.
.
3


!n
5
D.
.
3

Câu 45. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x)g(x)] = ab.
B. lim [ f (x) − g(x)] = a − b.
x→+∞
x→+∞
f (x) a
C. lim [ f (x) + g(x)] = a + b.
D. lim
= .
x→+∞
x→+∞ g(x)
b
!
1
1
1
Câu 46. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5

A. .
B. 2.
C. +∞.
D. .
2
2
Câu 47. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 6.
C. V = 5.
D. V = 4.
Câu 48. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −5.
B. 5.
C. −6.
!x
1
1−x
Câu 49. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. − log3 2.
B. − log2 3.
C. log2 3.
2

D. 6.

D. 1 − log2 3.

2

2

Câu 50. [3-c]
và giá trị lớn nhất của hàm √
số f (x) = 2sin x + 2cos x lần lượt là
√ Giá trị nhỏ nhất √
A. 2 và 2 2.
B. 2 và 3.
C. 2 2 và 3.
D. 2 và 3.
Câu 51. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 17 tháng.
C. 15 tháng.
D. 18 tháng.
Trang 4/10 Mã đề 1


Câu 52. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 15
a3 5
a3 15
a3

A.
.
B.
.
C.
.
D.
.
5
25
25
3
!4x
!2−x
3
2


Câu 53. Tập các số x thỏa mãn
3 # 2
"
!
#
"
!
2
2
2
2
A.

; +∞ .
B. −∞; .
C. −∞; .
D. − ; +∞ .
5
5
3
3
Câu 54.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 1.
C. 10.
D. 2.
Câu 55. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu của A lên BC là
!
!
5
8
7
A.
; 0; 0 .
B.
; 0; 0 .
C. (2; 0; 0).
D.
; 0; 0 .

3
3
3
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m > 4.
D. m ≤ 0.

Câu 56. [3-1226d] Tìm tham số thực m để phương trình
A. m < 0.

B. m < 0 ∨ m = 4.

Câu 57. [2] Cho hình chóp S .ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2
a 2
A.
.
B. a 2.
C. a 3.
D.
.
3
2
Câu 58. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ

C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
A. 2.
B. 3.
C. 1.
D.
.
3
!
5 − 12x
Câu 59. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 2.
B. 3.
C. 1.
D. Vô nghiệm.
Câu 60. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 12.


C. 8.

D. 6.

Câu 61. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).
B. (1; +∞).
C. (−∞; −1).
Câu 62. [1] Cho a > 0, a , 1 .Giá trị của biểu thức a
A. 5.

B. 25.

log √a 5

C.



D. (−∞; 1).

bằng
5.

D.

1
.
5


3

Câu 63. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e2 .
C. e3 .

D. e.

Câu 64. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 8 mặt.
C. 6 mặt.

D. 7 mặt.

Câu 65. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.
.
C.
.
D. a3 .
12

6
24
Trang 5/10 Mã đề 1



Câu 66. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) √
bằng


3a
3a 38
3a 58
a 38
.
B.
.
C.
.
D.
.
A.
29
29
29
29
Câu 67.√Thể tích của tứ diện đều √
cạnh bằng a

3
3
a 2
a 2
A.
.
B.
.
12
4


a3 2
C.
.
6


a3 2
D.
.
2

Câu 68. Trong khơng gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 3).
B. A0 (−3; −3; 3).
C. A0 (−3; 3; 1).
D. A0 (−3; −3; −3).
Câu 69. [3-12214d] Với giá trị nào của m thì phương trình

A. 0 < m ≤ 1.

B. 2 < m ≤ 3.

1
3|x−2|

= m − 2 có nghiệm

C. 0 ≤ m ≤ 1.

D. 2 ≤ m ≤ 3.

Câu 70. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 71. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
ab
1
A. √
.
B. √
.
C. 2
.

.
D. √
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
 π
x
Câu 72. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2


1 π
2 π4
3 π6
e .
B. 1.
C.
e .
D. e 3 .
A.
2
2
2
Câu 73. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. e.
C. −2 + 2 ln 2.
D. 4 − 2 ln 2.

Câu 74. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.
Câu 75. Tính giới hạn lim
A. 0.

B. 3.
2n + 1
3n + 2
1
B. .
2

C. 0.

C.

3
.
2

Câu 76. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Hai cạnh.
C. Ba cạnh.

D. 1.


D.

2
.
3

D. Bốn cạnh.

Câu 77. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 12 m.
C. 24 m.
D. 8 m.
Câu 78. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. 0.
C. Không tồn tại.

D. 9.
Trang 6/10 Mã đề 1


d = 30◦ , biết S BC là tam giác đều
Câu 79. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39

a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
9
13
16
26
Câu 80. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lập phương.
B. Khối bát diện đều.
C. Khối tứ diện.
D. Khối lăng trụ tam giác.
x3 − 1
Câu 81. Tính lim
x→1 x − 1
A. 3.
B. 0.

C. +∞.

D. −∞.


Câu 82. [2] Cho chóp đều S .ABCD có đáy là hình vuông tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 3.
B. 2a 6.
C.
.
D. a 6.
2
Câu 83. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
Câu 84. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).

B. (II) và (III).
C. (I) và (II).
D. Cả ba mệnh đề.
9x
Câu 85. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3

1
A. .
B. 2.
C. −1.
D. 1.
2
1 + 2 + ··· + n
Câu 86. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
B. Dãy số un khơng có giới hạn khi n → +∞.
A. lim un = .
2
C. lim un = 0.
D. lim un = 1.
2n − 3
Câu 87. Tính lim 2
bằng
2n + 3n + 1
A. 0.
B. 1.
C. +∞.
D. −∞.
Câu 88. [1] Tập
! xác định của hàm số y != log3 (2x + 1) là
!
1
1
1

A. − ; +∞ .
B. −∞; − .
C. −∞; .
2
2
2

!
1
D.
; +∞ .
2

1 − n2
bằng?
2n2 + 1
1
1
1
A. 0.
B. .
C. − .
D. .
3
2
2
Câu 90. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3

A. .
B. .
C. 3.
D. 1.
2
2
Câu 89. [1] Tính lim

Trang 7/10 Mã đề 1


Câu 91. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = 10.
C. P = 21.
D. P = −21.
Câu 92. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 3 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 18 lần.
Câu 93. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD


3
3
a

a
a3
3
3
A. a3 .
B.
.
C.
.
D.
.
3
9
3
Câu 94. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. Vô nghiệm.
C. 1.
D. 2.
[ = 60◦ , S A ⊥ (ABCD).
Câu 95. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh

√ S C là a. Thể tích khối chóp S .ABCD là
3
3
3

a 2
a 3

a
2
A.
.
B.
.
C. a3 3.
D.
.
12
6
4
Câu 96. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 6.
C. 4.
D. 3.
2
2n − 1
Câu 97. Tính lim 6
3n + n4
2
D. 1.
A. 0.
B. 2.
C. .
3
Câu 98. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2



A. −3 + 4 2.
B. 3 + 4 2.
C. −3 − 4 2.
D. 3 − 4 2.
1
Câu 99. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = −3.
B. m = −3, m = 4.
C. m = 4.
D. −3 ≤ m ≤ 4.
Câu 100. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≤ 0.
B. − < m < 0.
C. m > − .
D. m ≥ 0.
4
4
Câu 101. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ Thể tích khối chóp S 3.ABC
√ là



3
a 3
a3 3
a3 3
a 2
A.
.
B.
.
C.
.
D.
.
12
12
4
6
Câu 102. Dãy số nào sau đây có giới hạn khác 0?
sin n
1
1
n+1
A.
.
B. √ .
C. .
D.
.
n
n

n
n
Câu 103. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 3ac
A.
.
B.
.
C.
.
c+2
c+2
c+1
Câu 104. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 12.
C. 30.
Câu 105. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A.
.
B. .
C. 1.
2
2

D.


3b + 2ac
.
c+3

D. 8.
D. 2.
Trang 8/10 Mã đề 1



Câu 106. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 1 nghiệm.
B. 2 nghiệm.
C. 3 nghiệm.
D. Vô nghiệm.
1

Câu 107. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.
B. D = (−∞; 1).
C. D = R.

D. D = (1; +∞).

Câu 108. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.

B. Cả hai đều sai.

C. Cả hai đều đúng.

D. Chỉ có (II) đúng.

Câu 109. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(−4; −8)(.
C. A(4; −8).
D. A(−4; 8).
Câu 110. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
C.
f (x)dx = f (x).
Z
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
Câu 111. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Hai khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 112. [4-1246d] Trong tất cả các số phức z thỏa mãn√|z − i| = 1. Tìm giá trị lớn√nhất của |z|
D. 3.
A. 2.
B. 1.

C. 5.
Câu 113. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 2.
C. y(−2) = 6.
D. y(−2) = −18.
Câu 114. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a =
.
C. log2 a = loga 2.
D. log2 a = − loga 2.
loga 2
log2 a
Câu 115. [1] Đạo hàm của làm số y = log x là
1
1
A.
.
B. y0 = .
10 ln x
x

C. y0 =

1

.
x ln 10

D. y0 =

ln 10
.
x

Câu 116. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m < .
C. m > .
D. m ≥ .
4
4
4
4
Câu 117. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình lăng trụ.
C. Hình tam giác.

D. Hình chóp.

Câu 118. Khối đa diện đều loại {3; 4} có số cạnh

A. 12.
B. 10.

D. 8.

C. 6.

Trang 9/10 Mã đề 1


Câu 119. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. Cả ba đáp án trên.
[ = 60◦ , S O
Câu 120. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S
√ BC) bằng

2a 57
a 57
a 57
A.
.
B.
.

C.
.
D. a 57.
19
19
17
p
ln x
1
Câu 121. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
1
8
A. .
B. .
C. .
D. .
9
9
3
3

x2 + 3x + 5
Câu 122. Tính giới hạn lim
x→−∞
4x − 1

1
1
D. .
A. 1.
B. 0.
C. − .
4
4
Câu 123. Hàm số nào sau đây khơng có cực trị
x−2
1
A. y = x3 − 3x.
B. y = x4 − 2x + 1.
C. y =
.
D. y = x + .
2x + 1
x
Câu 124. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 6%.
C. 0, 8%.
D. 0, 7%.
Câu 125. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là −3, phần ảo là 4.

Câu 126. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (4; 6, 5].
C. (−∞; 6, 5).

D. [6, 5; +∞).

Câu 127.
định nào sau đây là sai?
!0
Z Các khẳng
Z
Z
A.
f (x)dx = f (x).
B.
k f (x)dx = k
f (x)dx, k là hằng số.
Z
Z
Z
Z
C.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. D.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
Câu 128. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.

A. 24.
B. 21.
C. 23.
D. 22.
Câu 129. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 8.

C. 30.

D. 20.

Câu 130. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m ≤ .
C. m < .
D. m > .
4
4
4
4
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

3.

D

5.

C

2.
4. A
6. A

C

7.

B

8.

9.

B


10.

B

11.

B

12.

B

13. A
C

16.

17.

B

18.

19.

B

20. A


21. A
B

25. A
27.

B

29. A
31.

B

33.

D

39.

B

24.

B

26.

B

28.


C

30.

C

32.

C

D

42. A

43.

D

44.

45.

D

46.

47.

D


48. A

B

51. A
D
B

57.
59.

D

40. A

41.

55.

B

38.

C

53.

D


22.

36.

37.

B

34. A

C

35. A

49.

C

14.

15.

23.

D

D

C
B


50.

C

52.

C

54.

B

56.

B

58. A
60.

C

61. A

62.

63. A

64. A


65. A

66.

67. A

68. A
1

D
B
D


69.

B

70.

71.

B

72. A

73.

B


74. A

75.

D

76.

77. A
79.

B

78.

C
B

80.

B

81. A

82.

83. A

84.


85.

D

C
D
C

86. A

87. A

88. A
C

89.

90.

B

91.

D

92.

93.

D


94.

D

95.

D

96.

D

97. A

98. A

99.

B

100.

101.

B

102.

103.


B

104.

105.

D

106.

107.

D

108.

109. A
111.

110.
D

D
C
B
D
B

114. A


115.

C

116. A

117.

C

118. A

119.

C

120.

121. A

B

122.

C

124.

C


125.

D

126.

127.

D

128.

129.

C

112. A

C

113.

123.

C

C

130.


2

D
B
D
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×