Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (823)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.1 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

1 − 2n
bằng?
Câu 1. [1] Tính lim
3n + 1
2
2
1
B. − .
C. .
D. 1.
A. .
3
3
3
Câu 2. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.
B. Hai mặt.
C. Một mặt.
D. Ba mặt.
log(mx)
Câu 3. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất


log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0.
C. m < 0 ∨ m = 4.
D. m ≤ 0.
Câu 4. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (2; 4; 4).
C. (1; 3; 2).
D. (2; 4; 3).
1
Câu 5. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. (−∞; −2] ∪ [−1; +∞). C. (−∞; −2) ∪ (−1; +∞). D. −2 < m < −1.
Câu 6. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 7. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (0; 1).
C. (−1; 0).
D. (−∞; −1) và (0; +∞).
Câu 8. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng





a 2
a 2
.
C. a 2.
.
B.
D.
A. a 3.
3
2
Câu 9. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
4x + 1
Câu 10. [1] Tính lim
bằng?
x→−∞ x + 1
A. 2.
B. 4.
C. −1.
D. −4.
Câu 11. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
Câu 12. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 72.

C. 7, 2.

D. 0, 8.

Câu 13. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



5a3 3
2a3 3
a3 3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
2
3
Câu 14. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.

B. y(−2) = 2.
C. y(−2) = 6.
D. y(−2) = −18.
Trang 1/10 Mã đề 1


Câu 15. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. 3.
C. 0.
D. −6.


4n2 + 1 − n + 2
bằng
Câu 16. Tính lim
2n − 3
3
A. +∞.
B. 1.
C. .
D. 2.
2
Câu 17. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
. Thể tích khối lăng trụ đã cho bằng

phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
3


2 3
A.
.
B. 1.
C. 3.
D. 2.
3
Câu 18. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
!
7
8
5
A.
; 0; 0 .
B. (2; 0; 0).
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3

Câu 19. Hàm số y = x +
A. 2.

1
có giá trị cực đại là
x
B. −2.

C. −1.

D. 1.

Câu 20. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {5; 2}.
C. {2}.
D. {5}.



x = 1 + 3t




Câu 21. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua





z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=
1
+
7t
x
=
−1
+
2t
x
=
−1
+

2t
x = 1 + 3t
















A. 
.
B. 
y=1+t
y = −10 + 11t . C. 
y = −10 + 11t . D. 
y = 1 + 4t .

















z = 1 + 5t
z = 6 − 5t
z = −6 − 5t
z = 1 − 5t


Câu 22. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt √l

A. Phần thực là 2, √
phần ảo là 1 − √
3.
B. Phần thực là √2 − 1, phần ảo là √
3.
C. Phần thực là 1 − 2, phần ảo là − 3.
D. Phần thực là 2 − 1, phần ảo là − 3.
Câu 23. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .

B. 0.
C. 1.
D. 22016 .
Câu 24. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 0.
B. 2.
C. 1.

D. 3.

Câu 25. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞

A. lim [ f (x) + g(x)] = a + b.

x→+∞

x→+∞

C. lim [ f (x) − g(x)] = a − b.
x→+∞

Câu 26. Hàm số y =
A. x = 3.

x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 2.


B. lim [ f (x)g(x)] = ab.
x→+∞
f (x) a
D. lim
= .
x→+∞ g(x)
b

C. x = 1.

D. x = 0.
Trang 2/10 Mã đề 1


Câu 27. Bát diện đều thuộc loại
A. {5; 3}.
B. {3; 3}.

C. {4; 3}.

D. {3; 4}.

Câu 28. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e2 − 2; m = e−2 + 2.
C. M = e−2 + 2; m = 1.
D. M = e−2 − 2; m = 1.
Câu 29. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab

1
ab
1
.
B. √
.
C. √
.
D. 2
.
A. √
2
2
2
2
2
2
a + b2
a +b
a +b
2 a +b
2
Câu 30. Tính
√ mơ đun của số phức z biết (1 + 2i)z = 3 + 4i. √4

A. |z| = 5.
B. |z| = 5.
C. |z| = 5.
D. |z| = 2 5.
2


Câu 31. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1
A. √ .
B. 3 .
C. 3 .
e
2e
2 e
Câu 32. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (−1; −7).
C. (2; 2).

D.

1
.
e2

D. (1; −3).

Câu 33. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
ab
1

A. √
.
B. √
.
C. 2
.
.
D. √
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
un
Câu 34. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 1.
B. 0.
C. +∞.
D. −∞.
0

0

0

0

Câu 35. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67

A. −7.
B.
.
C. −2.
D. −4.
27
Câu 36. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 20 mặt đều.
C. Khối 12 mặt đều.
D. Khối bát diện đều.
Câu 37. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 27.
C. 12.

D. 3.

Câu 38. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
D. 18.
A. 27.
B. 12.
C.
2
Câu 39. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 10.

C. 6.
D. 12.
Câu 40. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 30.

C. 12.

D. 20.

Câu 41. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 42. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 3
a3 3
a3 2
A.
.
B.
.
C.

.
D. 2a2 2.
24
12
24
Trang 3/10 Mã đề 1


Câu 43. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 6.
C. V = 4.
D. V = 3.
Câu 44. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (−∞; 0) và (2; +∞). C. (0; 2).

D. (−∞; 2).

Câu 45. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −9.
C. −15.
D. −5.
Câu 46. Biểu thức nào sau đây √
không có nghĩa
−3
−1

A. 0 .
B.
−1.


C. (− 2)0 .

D. (−1)−1 .

Câu 47. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng




a 3
a 3
2a 3
B.
.
C.
.
D.
.
A. a 3.
2
3
2
Câu 48. Cho hình chóp S .ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối


√ chóp S .ABCD là

3
3
a 6
a 3
a3 2
a3 3
A.
.
B.
.
C.
.
D.
.
48
24
16
48
Câu 49. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. 4.
B. .
C. .
D. .
2

4
8
Câu 50. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 51. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 2.

B. +∞.

C. 3.

D. 1.

Câu 52. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
5a
8a
a
2a
A.
.
B.
.
C. .

D.
.
9
9
9
9
d = 300 .
Câu 53. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V √của khối lăng trụ đã cho.


a3 3
3a3 3
3
3
A. V = 3a 3.
B. V =
.
C. V = 6a .
D. V =
.
2
2
3
2
Câu 54. Giá√trị cực đại của hàm số y =
√ x − 3x − 3x + 2

A. −3 + 4 2.
B. −3 − 4 2.

C. 3 + 4 2.
x+2
Câu 55. Tính lim
bằng?
x→2
x
A. 2.
B. 0.
C. 3.

Câu 56. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. .
B. 2.
C. − .
2
2


D. 3 − 4 2.

D. 1.

D. −2.
Trang 4/10 Mã đề 1


12 + 22 + · · · + n2
Câu 57. [3-1133d] Tính lim

n3
2
1
A. .
B. .
C. 0.
D. +∞.
3
3
Câu 58. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là

3
3

a 6
a 15
a3 5
3
A.
.
B.
.
C. a 6.
D.
.
3
3
3

Câu 59. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45√◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
10a3 3
A.
.
B. 40a3 .
C. 10a3 .
D. 20a3 .
3

Câu 60. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới đây?
"
!
5
5
A.
;3 .
B. [3; 4).
C. (1; 2).
D. 2; .
2
2
Câu 61. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (−∞; 1).
C. (−1; 1).
D. (−∞; −1).
2mx + 1

1
Câu 62. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −5.
B. 0.
C. 1.
D. −2.
Câu 63. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(−4; 8).
C. A(4; −8).
D. A(−4; −8)(.
Câu 64. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. Không tồn tại.
C. −5.

D. −7.

Câu 65. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 9.

B. 0.

C. 5.


Câu 66. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; 6, 5].
C. [6, 5; +∞).

D. 7.
D. (4; +∞).

Câu 67. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 68. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 10 năm.
C. 9 năm.
D. 8 năm.
Câu 69. [1] Đạo hàm của làm số y = log x là
ln 10
1
A. y0 =
.
B. y0 =
.
x
x ln 10
Câu 70. [1] Tập xác định của hàm số y = 2 x−1 là

A. D = R \ {0}.
B. D = R \ {1}.

1
C. y0 = .
x

D.

1
.
10 ln x

C. D = (0; +∞).

D. D = R.

Câu 71. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. 1.
C. −2 + 2 ln 2.

D. 4 − 2 ln 2.

Câu 72. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 4.

D. 3.


C. 2.

Trang 5/10 Mã đề 1


4

Câu 73. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 :
5
7
5
A. a 3 .
B. a 3 .
C. a 8 .

√3

a2 bằng
2

D. a 3 .

Câu 74. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




20 3

14 3
A. 6 3.
B.
.
C. 8 3.
D.
.
3
3
Câu 75. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.
C. Khối 12 mặt đều.
D. Khối bát diện đều.
Câu 76. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 7%.
C. 0, 8%.
D. 0, 5%.
2x + 1
Câu 77. Tính giới hạn lim
x→+∞ x + 1
1
A. 1.
B. .
C. −1.
D. 2.
2

Câu 78. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một mơn nằm cạnh nhau là
1
1
9
2
B.
.
C. .
D.
.
A. .
5
10
5
10
d = 120◦ .
Câu 79. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
A. 3a.
B. 4a.
C. 2a.
D.
2
7n2 − 2n3 + 1
Câu 80. Tính lim 3
3n + 2n2 + 1
7

2
A. .
B. - .
C. 1.
D. 0.
3
3
Câu 81. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m > 0.
C. m < 0.

Câu 82. Xác định phần ảo của số phức z = ( 2 + 3i)2

A. −7.
B. 7.
C. −6 2.
Câu 83. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
4e + 2
4 − 2e
4 − 2e


D. m , 0.

D. 6 2.
D. m =

1 − 2e
.
4e + 2

Câu 84. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m > − .
B. m ≥ 0.
C. − < m < 0.
D. m ≤ 0.
4
4
Câu 85. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 23.
C. 21.
D. 22.
Câu 86. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 20.


C. 12.

D. 30.
Trang 6/10 Mã đề 1


d = 30◦ , biết S BC là tam giác đều
Câu 87. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
9
26
16
13
Câu 88. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?

A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 89. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 90.
Z Trong các khẳng định sau, khẳng định nào sai? Z
Z
C.

1
dx = ln |x| + C, C là hằng số.
Z x
xα+1
D.
xα dx =
+ C, C là hằng số.
α+1

dx = x + C, C là hằng số.

A.

B.

0dx = C, C là hằng số.

2

Câu 91. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 4.
B. 2.
C. 5.

D. 3.

Câu 92. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
.
B. 2.
C. 2 13.
D.
A. 26.
13
Câu 93. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 10 năm.
C. 11 năm.
D. 14 năm.

Câu 94. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp
√ là 1728. Khi đó, các kích thước của hình hộp là
√ đã cho
A. 2 3, 4 3, 38.
B. 2, 4, 8.
C. 6, 12, 24.
D. 8, 16, 32.
Câu 95. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 4.

C. 6.

Câu 96. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 3.
B. .
C. 2e.
e
Câu 97. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.

D. 8.
D. 2e + 1.

Câu 98. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng

biến d thành d0 ?
A. Có hai.
B. Có một.
C. Khơng có.
D. Có một hoặc hai.
Câu 99. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là
3
3
2a 3
4a 3
a3
a3
A.
.
B.
.
C.
.
D.
.
3
3
3
6
Trang 7/10 Mã đề 1


d = 60◦ . Đường chéo

Câu 100. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





a3 6
4a3 6
2a3 6
3
.
B. a 6.
C.
.
D.
.
A.
3
3
3

Câu 101. [1] Biết log6 a = 2 thì log6 a bằng
A. 6.
B. 108.
C. 4.
D. 36.
Câu 102. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9

A.
.
B. 7.
C. 5.
D. .
2
2
 π
Câu 103. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


1 π3
3 π6
2 π4
e .
e .
A. e .
B. 1.
C.
D.
2
2
2
Câu 104. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích
hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 2.
C. 0, 4.
D. 0, 5.

Câu 105. Tính lim
A. +∞.

x→3

x2 − 9
x−3

B. −3.

C. 3.

D. 6.


Câu 106. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 3
πa3 3
πa3 6
A. V =
.
B. V =
.
C. V =

.
D. V =
.
3
6
2
6
Câu 107. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 4 lần.
C. Tăng gấp đôi.
D. Tăng gấp 6 lần.
x−3 x−2 x−1
x
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. [2; +∞).
C. (2; +∞).
D. (−∞; 2].
Câu 108. [4-1213d] Cho hai hàm số y =


Câu 109. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {3; 3}.

D. {4; 3}.

Câu 110. Cho z √
là nghiệm của phương trình x2 + x + 1 = 0. Tính P √
= z4 + 2z3 − z
−1 + i 3
−1 − i 3
A. P =
.
B. P = 2i.
C. P =
.
D. P = 2.
2
2
Câu 111. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 10.
C. 20.
D. 12.
Câu 112. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R.
B. D = (−2; 1).
C. D = [2; 1].
2


D. D = R \ {1; 2}.

Câu 113. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng




a 2
a 2
A. 2a 2.
B. a 2.
C.
.
D.
.
2
4
Trang 8/10 Mã đề 1


Câu 114. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17

.
C. 34.
A. 68.
B.
D. 5.
17
Câu 115. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)30
C 10 .(3)40
C 40 .(3)10
C 20 .(3)20
B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4
4
8
Câu 116. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 82.
B. 64.
C. 96.
D. 81.
Câu 117. [1] Tập

! xác định của hàm số! y = log3 (2x + 1) là
!
1
1
1
B.
; +∞ .
C. −∞; − .
A. − ; +∞ .
2
2
2

!
1
D. −∞; .
2

2n2 − 1
Câu 118. Tính lim 6
3n + n4
2
A. .
B. 1.
3
Câu 119. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối 20 mặt đều.

C. 0.


D. 2.

C. Khối bát diện đều.

D. Khối tứ diện đều.

Câu 120. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.
B. 8.

C. 20.

D. 12.

Câu 121. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. −1.
C. 2.

D. 6.

3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng √
a 2
2a
a

a
A.
.
B.
.
C. .
D. .
3
3
4
3
Câu 123. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là

3
3
a 3
a3 3
a3 6
2a 6
A.
.
B.
.
C.
.
D.
.

9
2
4
12
Câu 124. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. 4.
C. 2.
D. −4.
p
ln x
1
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
Câu 125. Gọi F(x) là một nguyên hàm của hàm y =
x
3
1
1
8
8
A. .
B. .
C. .
D. .
3
9
9
3
!2x−1
!2−x

3
3
Câu 126. Tập các số x thỏa mãn


5
5
A. [3; +∞).
B. (+∞; −∞).
C. [1; +∞).
D. (−∞; 1].
!
x+1
Câu 127. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
2017
4035
A.
.
B.
.
C.
.
D. 2017.
2017
2018
2018
Câu 122. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =


Trang 9/10 Mã đề 1


[ = 60◦ , S O
Câu 128. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ O đến (S√BC) bằng


2a 57
a 57
a 57
C.
A.
.
B. a 57.
.
D.
.
17
19
19


Câu 129.
Tìm
giá
trị
lớn

nhất
của
hàm
số
y
=
x
+
3
+


√6 − x
A. 3 2.
B. 2 + 3.
C. 2 3.
D. 3.
q
2
Câu 130. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x + log23 x + 1 + 4m −
√ i
h
1 = 0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 4].
C. m ∈ [−1; 0].
D. m ∈ [0; 2].
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2. A
C

3.

4. A

5. A
7.

C

9. A

6.

D

8.

D


10.

11. A

B

12. A

13.

14.

C

15. A

16.
D

17.

D
B
C

18.

19.


B

20.

D

21.

B

22.

D

23.

B

24. A

25.

D

26.

27.

D


28.

29.

D

C

32. A

B

35.

D

30.

B

31.
33.

C

C

34.

B


36.

B

37.

D

38.

39.

D

40.

C

42.

C

41.

B

43.

44.


C

45. A

D

B

46. A

47.

C

48.

D

49.

C

50.

D

51. A

52.


53.

D

54. A
56.

55. A
57.

B

D

58. A

59.
61.

B

D

60. A
62.

B

63. A


64.

B

65. A

66.

B

67.

C

D

68.
1

C


69.

70.

B

71. A


72.

D
B

73.

D

74. A

75.

D

76.

77.

D

78.

79.

D

80.


81.

D

82.

83.

D

84. A

85.

D

86.

87.

D

88.

D

89.

D


90.

D

92.

D

91. A
C

93.

D

96. A

97.

D

98.

B

101.

100.
D


104. A

105.

D

106. A

107. A

108.

111.

D

114.

115. A

116.

117. A

118.

119. A

120. A


121.

D

122.

123.

D

124. A

127.

B

C
D
B
D

B
D

112. A

C

125.


D

110.

B

113.

B

102.

C

103.

109.

D

94.

95.
99.

B

C

126.


B
D
C
B
C

128.

B

129. A

130.

2

D
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×