Tài liệu Pdf free LATEX
ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001
Câu 1. Cho hai số phức z1 = 1 + 2i và z2 = 2 − 3i. Khi đó số phức w = 3z1 − z2 + z1 z2 có phần ảo bằng
bao nhiêu?
A. 9.
B. −9.
C. −10.
D. 10.
Câu 2. Cho số phức z = a + bi(a, b ∈ R), trong các mệnh đề sau, đâu là mệnh đề đúng?
A. |z2 | = |z|2 .
B. z − z = 2a.
C. z · z = a2 − b2 .
D. z + z = 2bi.
Câu 3. Cho A = 1 + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ . Hỏi đâu là phương án đúng?
A. A = 2k.
B. A = 2ki.
C. A = 0.
D. A = 1.
2
4(−3 + i) (3 − i)
Câu 4. Cho số phức z thỏa mãn z =
+
. Mô-đun của số phức w = z − iz + 1 là
−i
√1 − 2i
√
√
√
B. |w| = 4 5.
C. |w| = 85.
D. |w| = 6 3.
A. |w| = 48.
Câu 5.
√ Cho số phức z1 = 3 + 2i,
√ z2 = 2 − i. Giá trị của biểu
√ thức |z1 + z1 z2 | là
√
A. 130.
B. 3 10.
C. 2 30.
D. 10 3.
√
Câu 6. Cho số phức z = (m − 1) + (m + 2)i với m ∈ R. Tập hợp tất các giá trị của m để |z| ≤ 5 là
A. m ≥ 1 hoặc m ≤ 0. B. m ≥ 0 hoặc m ≤ −1. C. 0 ≤ m ≤ 1.
D. −1 ≤ m ≤ 0.
Câu 7. Cho hàm số y = f (x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
A. (3; +∞).
B. (−∞; 1).
C. (0; 2).
D. (1; 3).
Câu R8. Cho hàm số f (x) = cos x + x. Khẳng định nào dưới
đây đúng?
R
x2
A. f (x)dx = − sin x + 2 + C.
B. f (x)dx = − sin x + x2 + C.
R
R
2
C. f (x)dx = sin x + x2 + C.
D. f (x)dx = sin x + x2 + C.
Câu 9. Phần ảo của số phức z = 2 − 3i là
A. 2.
B. −2.
C. −3.
D. 3.
Câu 10. Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với mọi x ∈ R. Hàm số đã cho đồng
biến trên khoảng nào dưới đây?
A. (1; 2).
B. (−∞; 1).
C. (1; +∞).
D. (2; +∞).
Câu 11. Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
A. 60◦ .
B. 30◦ .
C. 45◦ .
D. 90◦ .
Câu 12. Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x−2
= y−1
=
2
2
phẳng đi qua A và chứa d. Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng
A. 31 .
B. 113 .
C. 5.
D. 1.
z−1
.
−3
Gọi (P) là mặt
Câu 13. Trong không gian với hệ trục tọa độ Oxyz, viết phương trình tham số của đường thẳng (d) đi
−u (2; 3; −5).
qua điểm A(1; −2; 4) và có một véc tơ chỉ phương là →
x = −1 + 2t
x = 1 + 2t
x = 1 + 2t
x = 1 − 2t
y = −2 + 3t .
y = 2 + 3t .
y = −2 − 3t .
y = −2 + 3t .
B.
C.
D.
A.
z = 4 − 5t
z = 4 + 5t
z = −4 − 5t
z = 4 − 5t
Câu 14. Chọn mệnh đề đúng trong các mệnh đề sau:
A. Nếu a > 0 thì a x > ay ⇔ x < y.
B. Nếu a > 1 thì a x > ay ⇔ x > y.
x
y
C. Nếu a < 1 thì a > a ⇔ x < y.
D. Nếu a > 0 thì a x = ay ⇔ x = y.
Trang 1/5 Mã đề 001
Câu 15. Cho mặt cầu (S ) có bán kính bằng R = 5, một hình trụ (T )có hai đường trịn đáy nằm trên mặt
cầu (S ). Thể
√ tích của khối trụ (T ) lớn
√ nhất bằng bao nhiêu. √
√
500π 3
400π 3
125π 3
250π 3
A.
.
B.
.
C.
.
D.
.
9
9
3
9
Câu 16. Hàm số y = x4 − 4x2 + 1 đồng biến trên khoảng nào trong các khoảng sau đây.
A. (−1; 1).
B. (1; 5).
C. (−3; 0).
D. (3; 5).
√
Câu 17. Cho bất phương trình 3 2(x−1)+1 − 3 x ≤ x2 − 4x + 3. Tìm mệnh đề đúng.
A. Bất phương trình có nghiệm thuộc khoảng (−∞; 1).
B. Bất phương trình vơ nghiệm.
C. Bất phương trình đúng với mọi x ∈ [ 1; 3].
D. Bất phương trình đúng với mọi x ∈ (4; +∞).
x2
Câu 18. Tính tích tất cả các nghiệm của phương trình (log2 (4x))2 + log2 ( ) = 8
8
1
1
1
1
A.
.
B. .
C. .
D. .
128
6
64
32
Câu 19. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x + y − 8 = 0.
B. x − y + 8 = 0.
C. x + y − 5 = 0.
D. x − y + 4 = 0.
Câu 20. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Hai đường thẳng.
B. Đường tròn.
C. Parabol.
D. Một đường thẳng.
Câu 21. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z
và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
9
1
9 9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
4
1
2
1
A. √ .
C. .
B. √ .
D. √ .
2
13
5
2
z−z
=2?
Câu 22. Tìm tập hợp các điểm M biểu diễn số phức z sao cho
z − 2i
A. Một đường tròn.
B. Một Elip.
C. Một đường thẳng.
D. Một Parabol.
Câu 23. Cho số phức z thỏa mãn |z| = 4. Biết rằng tập hợp điểm biểu diễn các số phức w = (3 + 4i)z + i
là một đường trịn. Tính bán kính r của đường trịn đó.
A. r = 22.
B. r = 5.
C. r = 20.
D. r = 4.
Câu 24. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. 3π.
B. 4π.
C. π.
D. 2π.
Câu 25. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt
là
A. 5 và 4.
B. 4 và 3.
C. 5 và 3.
D. 10 và 4.
Câu 26. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt
là
A. 4 và 3.
B. 10 và 4.
C. 5 và 3.
D. 5 và 4.
−2 − 3i
Câu 27. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện
z + 1
= 1.
3 − 2i
√
B. max |z| = 2.
C. max |z| = 1.
D. max |z| = 3.
A. max |z| = 2.
Câu 28. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Một đường thẳng.
B. Đường tròn.
C. Hai đường thẳng.
D. Parabol.
Trang 2/5 Mã đề 001
Câu 29. Trong mặt phẳng tọa độ Oxy, tìm tập hợp điểm M biểu diễn số phức w thõa mãn điều kiện
w = (1 − 2i)z + 3, biết z là số phức thỏa mãn |z + 2| = 5.
A. (x + 1)2 + (y − 2)2 = 125.
B. x = 2.
2
2
C. (x − 5) + (y − 4) = 125.
D. (x − 1)2 + (y − 4)2 = 125.
Câu 30. Gọi z1 và z2 là các nghiệm của phương trình z2 − 4z + 9 = 0. Gọi M, N là các điểm biểu diễn
của z1 , z2 trên mặt phẳng phức. Khi đó độ dài của MN là
√
√
D. MN = 5.
A. MN = 5.
B. MN = 4.
C. MN = 2 5.
Câu 31. Gọi z1 và z2 là các nghiệm của phương trình z2 − 2z + 10 = 0. Gọi M, N, P lần lượt là các điểm
biểu diễn của √
z1 , z2 và số phức w √= x + iy trên mặt phẳng phức.
√ Để tam giác MNP
√ đều là số phức k là
B. w = 27√− i hoặcw = 27 +√i.
A. w = 1 +
√ 27 hoặcw = 1 −√ 27.
C. w = − 27 − i hoặcw = − 27 + i.
D. w = 1 + 27i hoặcw = 1 − 27i.
Câu 32. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng
5π
5π
.
C. 25π.
D. .
A. 5π.
B.
2
4
Câu 33. Cắt một hình nón bởi một mặt phẳng đi qua trục của nó, ta được thiết diện là tam giác vng
với cạnh huyền bằng 2a. Tính thể tích của khối nón.
√
√
2π.a3
π.a3
π 2.a3
4π 2.a3
.
B.
.
C.
.
D.
.
A.
3
3
3
3
Câu 34. Tìm tất cả m sao cho điểm cực tiểu của đồ thị hàm số y = x3 + x2 + mx − 1nằm bên phải trục
tung.
1
1
D. m < .
A. Không tồn tại m.
B. m < 0.
C. 0 < m < .
3
3
Câu 35. Cho hình phẳng (H) giới hạn bởi các đường y = x2 ; y = 0; x = 2 Tính thể tích V của khối trịn
xoay tạo thành khi quay (H) quanh trục Ox.
8π
32π
8
32
A. V =
.
B. V =
.
C. V = .
D. V = .
3
5
3
5
Câu 36. Cho hình lập phương ABCD.A′ B′C ′ D′ có cạnh bằng a. Tính thể tích khối chóp D.ABC ′ D′ .
a3
a3
a3
a3
B. .
C. .
D. .
A. .
9
3
4
6
Câu 37. Một hình trụ có diện tích xung quanh bằng 4π và có thiết diện qua trục của nó là một hình
vng. Tính thể tích của khối trụ.
A. 4π.
B. 2π.
C. 3π.
D. π .
Câu 38. Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − 4 và f (0) = 1, f (1) = 3. Tính f (−1).
A. f (−1) = 3.
B. f (−1) = −1.
C. f (−1) = −5.
D. f (−1) = −3.
Câu 39. Đồ thị hàm số y = −x3 + 3x2 − 3x + 2 có bao nhiêu điểm cực trị?
A. 3.
B. 1.
C. 0.
D. 2.
Câu 40. Khối đa diện nào trong các khối đa diện sau có tính chất: “Mỗi mặt của khối đa diện là một tam
giác đều và mỗi đỉnh của nó là đỉnh chung của đúng ba mặt. ”?
A. Khối mười hai mặt đều.
B. Khối tứ diện đều.
C. Khối bát diện đều.
D. Khối lập phương.
2x − 3
Câu 41. Cho hàm số y =
. Trong các khẳng định sau, khẳng định nào đúng?
−x + 2
A. Hàm số đồng biến trên tập xác định của nó. B. Hàm số đồng biến trên khoảng (−2; 2).
C. Hàm số đồng biến trên khoảng (2; +∞).
D. Hàm số đồng biến trên khoảng (−2; +∞).
Câu 42. Cho hình lăng trụ đứng ABC.A′ B′C ′ có AA′ = 3a, tam giác ABC vuông cân tại A và BC = 2a.
Tính thể tích V của khối lăng trụ ABC.A′ B′C ′ .
A. V = 6a3 .
B. V = a3 .
C. V = 12a3 .
D. V = 3a3 .
Trang 3/5 Mã đề 001
Câu 43. Trong các hình dưới đây, có bao nhiêu hình đa diện?
Hình 1
A. 3.
B. 0.
Hình 3
Hình 2
C. 1.
D. 2.
Câu 44. Tìm giá trị nhỏ nhất của hàm số f (x) = 2x3 − 3x2 − 12x + 10 trên đoạn [−3; 3].
A. 17.
B. −10.
C. 1.
D. −35.
Câu 45. Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn |z + 2i| = 1 là một
đường trịn. Tâm của đường trịn đó có tọa độ là
A. (0; −2).
B. (−2; 0).
C. (0; 2).
D. (2; 0).
có đồ thị là đường cong trong hình bên. Tọa độ giao điểm của đồ thị hàm
Câu 46. Cho hàm số y = ax+b
cx+d
số đã cho và trục hoành là
A. (0; 2).
B. (−2; 0).
C. (0; −2).
D. (2; 0).
Câu 47. Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = 7 − 6i có tọa độ là
A. (7; 6).
B. (−6; 7).
C. (6; 7).
D. (7; −6).
Câu 48. Trong không gian Oxyz, mặt phẳng (P) : x + y + z + 1 = 0 có một vectơ pháp tuyến là:
−
−
−
−
A. →
n3 = (1; 1; 1).
B. →
n1 = (−1; 1; 1).
C. →
n4 = (1; 1; −1).
D. →
n2 = (1; −1; 1).
Câu 49. Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với mọi x ∈ R. Hàm số đã cho đồng
biến trên khoảng nào dưới đây?
A. (1; 2).
B. (1; +∞).
C. (−∞; 1).
D. (2; +∞).
Câu 50. Cho tập hợp A có 15 phần tử. Số tập con gồm hai phần tử của A bằng
A. 210.
B. 225.
C. 105.
D. 30.
Trang 4/5 Mã đề 001
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 5/5 Mã đề 001