Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (768)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (123.29 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001

Câu 1. Số phức z =
A. 3.

4 + 2i + i2017
có tổng phần thực và phần ảo là
2−i
B. 2.
C. 1.

D. -1.

Câu 2. Cho A = 1 + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ . Hỏi đâu là phương án đúng?
A. A = 0.
B. A = 1.
C. A = 2k.
D. A = 2ki.
Câu 3. Cho các mệnh đề sau:
I. Cho x, y là hai số phức thì số phức x + y có số phức liên hợp là x + y.
II. Số phức z = a + bi (a, b ∈ R) thì z2 + (z)2 = 2(a2 − b2 ).
III. Cho x, y là hai số phức thì số phức xy có số phức liên hợp là xy.
IV. Cho x, y là hai số phức thì số phức x − y có số phức liên hợp là x − y.
A. 1.
B. 4.


C. 3.
D. 2.
(1 + i)(2 + i) (1 − i)(2 − i)
+
. Trong tất cả các kết luận sau, kết luận
Câu 4. Cho số phức z thỏa mãn z =
1−i
1+i
nào đúng?
1
C. z = z.
D. z là số thuần ảo.
A. |z| = 4.
B. z = .
z
Câu 5. Cho hai√số phức z1 = 1 + i và z2 √
= 2 − 3i. Tính mơ-đun của số phức z1 + z2 .
A. |z1 + z2 | = 13.
B. |z1 + z2 | = 5.
C. |z1 + z2 | = 5.
D. |z1 + z2 | = 1.
Câu 6. √Cho số phức z1 = 3 + √
2i, z2 = 2 − i. Giá trị của biểu
√ thức |z1 + z1 z2 | là

B. 130.
C. 3 10.
D. 2 30.
A. 10 3.
Câu 7. Cho tập hợp A có 15 phần tử. Số tập con gồm hai phần tử của A bằng

A. 105.
B. 210.
C. 225.
D. 30.
Câu R8. Cho hàm số f (x) = cos x + x. Khẳng định nào dưới
đây đúng?
R
2
A. f (x)dx = sin x + x + C.
B. f (x)dx = − sin x + x2 + C.
R
R
2
2
C. f (x)dx = sin x + x2 + C.
D. f (x)dx = − sin x + x2 + C.
Câu 9. Tích tất cả các nghiệm của phương trình ln2 x + 2 ln x − 3 = 0 bằng
A. −2.
B. −3.
C. e12 .
D. e13 .






Câu 10. Xét các số phức z thỏa mãn
z2 − 3 − 4i
= 2|z|. Gọi M và m lần lượt là giá trị lớn nhất và giá trị

nhỏ nhất của |z|. Giá trị của M 2 + m2 bằng
A. 14.
B. 28.


C. 18 + 4 6.


D. 11 + 4 6.

Câu 11. Trong không gian Oxyz, cho hai điểm A(0; 0; 10) và B(3; 4; 6). Xét các điểm M thay đổi sao
cho tam giác OAM khơng có góc tù và có diện tích bằng 15. Giá trị nhỏ nhất của độ dài đoạn thẳng MB
thuộc khoảng nào dưới đây?
A. (2; 3).
B. (6; 7).
C. (4; 5).
D. (3; 4).
Câu 12. Thể tích khối trịn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y = −x2 + 2x và
y = 0 quanh trục Ox bằng
A. 16π
.
B. 16
.
C. 16π
.
D. 169 .
15
15
9
Câu 13. Cho hình√chóp S .ABCD có đáy ABCD là hình vng. Cạnh S A vng góc với mặt phẳng

(ABCD); S A = 2a 3. Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 . Gọi M, N lần lượt là trung
điểm hai√cạnh AB, AD. Tính khoảng
MN và S C.
√ cách giữa hai đường thẳng


3a 6
a 15
3a 6
3a 30
A.
.
B.
.
C.
.
D.
.
2
2
8
10
Trang 1/5 Mã đề 001


Câu 14. Hàm số nào trong các hàm số sau đồng biến trên R.
4x + 1
.
B. y = x3 + 3x2 + 6x − 1.
A. y =

x+2
C. y = x4 + 3x2 .
D. y = −x3 − x2 − 5x.
Câu 15. Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3 + 3mx2 − 3mx + 1 có hai điểm
cực trị nằm về hai phía trục Ox.
1
D. m < −2.
A. m > 1 hoặc m < − . B. m > 2 hoặc m < −1. C. m > 1.
3
Câu 16. Bác An đem gửi tổng số tiền 320 triệu đồng ở một ngân hàng A theo hình thức lãi kép, ở hai
loại kỳ hạn khác nhau. Bác An gửi 140 triệu đồng theo kỳ hạn ba tháng với lãi suất 2, 1
A. 36080251 đồng.
B. 36080254 đồng.
C. 36080253 đồng.
D. 36080255 đồng.
Câu 17. Tìm tất cả các giá trị của tham số m để hàm số y = x3 − 3x + m có giá trị lớn nhất và nhỏ nhất
trên đoạn [ -1; 3] lần lượt là a, b sao cho a.b = −36.
A. m = 0 hoặc m = −10.
B. m = 1.
C. m = 0 hoặc m = −16.
D. m = 4.
Câu 18. Hàm số y = x4 − 4x2 + 1 đồng biến trên khoảng nào trong các khoảng sau đây.
A. (−1; 1).
B. (3; 5).
C. (−3; 0).
D. (1; 5).

Câu 19. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 7.
B. max |z| = 4.

C. max |z| = 6.
D. max |z| = 3.
Câu 20. Tập hợp điểm biểu diễn các số phức w = (1 + i)z + 1 với z là số phức thỏa mãn |z − 1| ≤ 1 là
hình trịn có diện tích bằng bao nhiêu
A. 4π.
B. π.
C. 3π.
D. 2π.
Câu 21. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z2 |.




3
2
A. P = 2.
B. P =
.
C. P =
.
D. P = 3.
2
2
z+i+1
Câu 22. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
là số thuần ảo?
z + z + 2i
A. Một đường thẳng.
B. Một Parabol.

C. Một Elip.
D. Một đường tròn.






z−z


=2?
Câu 23. Tìm tập hợp các điểm M biểu diễn số phức z sao cho



z − 2i

A. Một đường thẳng.
B. Một đường tròn.
C. Một Elip.
D. Một Parabol.
Câu 24. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x + y − 5 = 0.
B. x + y − 8 = 0.
C. x − y + 8 = 0.
D. x − y + 4 = 0.

Câu 25. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.

Tính |z|. √


A. |z| = 5 2.
B. |z| = 33.
C. |z| = 10.
D. |z| = 50.

Câu 26. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
1
3
1
3
A. |z| > 2.
B. < |z| < .
C. |z| < .
D. ≤ |z| ≤ 2.
2
2
2
2

Câu 27. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 6.
B. max |z| = 3.
C. max |z| = 7.
D. max |z| = 4.
Câu 28. Biết tập hợp điểm biểu diễn số phức z thỏa mãn |z+1| = |z−2i+3| là đường thẳng d : x+ay+b = 0.
Tính giá trị của biểu thức a + b.

A. 0.
B. 1.
C. −1.
D. 2.
Trang 2/5 Mã đề 001


Câu 29. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt

A. 10 và 4.
B. 5 và 4.
C. 4 và 3.
D. 5 và 3.
Câu 30. Cho số phức z thỏa mãn (z + 1) (z − 2i) là số thuần ảo. Tập hợp các điểm biểu diễn số phức z là
một hình trịn có diện tích bằng


B. 5π.
C. 25π.
D. .
A. .
2
4
Câu 31. Giả sử (H) là tập hợp điểm biểu diễn số phức z thoả mãn |z − i| = |(1 + i)z|. Diện tích hình phẳng
(H) là
A. 4π.
B. 3π.
C. 2π.
D. π.
Câu 32. (Chuyên Lào Cai) Xét số phức z và z có điểm biểu diễn lần lượt là M và M ′ . Số phức ω = (4+3i)z

và ω có điểm biểu diễn lần lượt là N và N ′ . Biết rằng M, M ′ , N, N ′ là bốn đỉnh của hình chữ nhật. Tìm
9 9
1
9
giá trị nhỏ nhất của ⇒ |z + 4i − 5| ≥ √ ⇔ x = ⇔ z = − i|z + 4i − 5|.
2
2 2
2
1
2
1
4
A. √ .
D. √ .
B. .
C. √ .
2
13
2
5
Câu 33. Cho hình phẳng (H) giới hạn bởi các đường y = x2 ; y = 0; x = 2 Tính thể tích V của khối trịn
xoay tạo thành khi quay (H) quanh trục Ox.
8
32
32π

A. V = .
B. V = .
C. V =
.

D. V =
.
3
5
5
3
Câu 34. Tìm tất cả các giá trị của tham số m sao cho đồ thị của hai hàm số y = x3 +x2 và y = x2 +3x+mcắt
nhau tại nhiều điểm nhất.
A. −2 ≤ m ≤ 2.
B. m = 2.
C. −2 < m < 2.
D. 0 < m < 2.

d = 1200 . Gọi
Câu 35. Cho hình lăng trụ đứng ABC.A1 B1C1 có AB = a, AC = 2a, AA1 = 2a 5 và BAC
K, I lần√lượt là trung điểm của cạnh
√ CC1 , BB1 . Tính khoảng cách từ điểm I đến mặt
√ phẳng (A1 BK).

a 5
a 5
a 15
.
B.
.
C. a 15.
D.
.
A.
3

6
3
Câu 36. Cho khối tứ diện ABCD có thể tích V và điểm M trên cạnh AB sao cho AB = 4MB. Tính thể
tích của khối tứ diện B.MCD.
V
V
V
V
A. .
B. .
C. .
D. .
3
4
2
5
Câu 37. Cho hình trụ có hai đáy là hai đường trịn (O; r) và (O′ ; r). Một hình nón có đỉnh O và có đáy là
hình trịn (O′ ; r). Mặt xung quanh của hình nón chia khối trụ thành hai phần. Gọi V1 là thể tích của khối
V1
nón, V2 là thể tích của phần cịn lại. Tính tỉ số .
V2
V1 1
V1 1
V1 1
V1
A.
= .
B.
= .
C.

= .
D.
= 1.
V2 2
V2 3
V2 6
V2
Câu 38. Cho hình thang cân có độ dài đáy nhỏ và hai cạnh bên đều bằng 1 mét. Khi đó hình thang đã
cho có diện tích lớn nhất bằng? √


3 3 2
3 3 2
2
A. 3 3(m ).
B.
(m ).
C.
(m ).
D. 1 (m2 ).
2
4
Câu 39. Cho hàm số y = f (x) liên tục trên R và có đạo hàm f ′ (x) = x(x + 1). Hàm số y = f (x) đồng
biến trên khoảng nào trong các khoảng dưới đây?
A. (−1; 0).
B. (−1; +∞).
C. (0; +∞).
D. (−∞; 0).
Câu 40. Cho hình lăng trụ đứng ABC.A′ B′C ′ có AA′ = 3a, tam giác ABC vuông cân tại A và BC = 2a.
Tính thể tích V của khối lăng trụ ABC.A′ B′C ′ .

A. V = 3a3 .
B. V = 6a3 .
C. V = a3 .
D. V = 12a3 .
Câu 41. Bảng biến thiên trong hình dưới đây của hàm số nào trong các hàm số sau?
Trang 3/5 Mã đề 001


x

−∞

+∞

1
+

y′

+
+∞

2

y
2

A. y =

2x − 1

.
x+1

B. y =

Câu 42. Cho hàm số y =
điểm của (C) và d.
A. 2.

2x + 1
.
x−1

−∞

C. y =

2x + 3
.
x−1

D. y =

2x − 3
.
x−1

x+1
có đồ thị là (C) và đường thẳng d có phương trình y = 5 − x. Tìm số giao
x−1

B. 3.

C. 0.

D. 1.

Câu 43. Cho hàm số y = f (x) liên tục trên R và lim y = 3. Trong các khẳng định sau, khẳng định nào
x→+∞
luôn đúng?
A. Đường thẳng y = 3 là một tiệm cận đứng của đồ thị hàm số y = f (x).
B. Đường thẳng y = 3 là một tiệm cận ngang của đồ thị hàm số y = f (x).
C. Đường thẳng x = 3 là một tiệm cận ngang của đồ thị hàm số y = f (x).
D. Đường thẳng x = 3 là một tiệm cận đứng của đồ thị hàm số y = f (x).
Câu 44. Cho hàm số y =
A. 0.

x+1
. Tìm giá trị lớn nhất của hàm số trên đoạn [−1; 2].
3−x
B. 2.
C. −1.
D. 3.

Câu 45. Trong khơng gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
A. 30◦ .
B. 90◦ .
C. 60◦ .
D. 45◦ .
Câu 46. Có bao nhiêu cặp số nguyên (x; y) thỏa mãn







log3 x2 + y2 + x + log2 x2 + y2 ≤ log3 x + log2 x2 + y2 + 24x ?

A. 89.

B. 49.

Câu 47. Tiệm cận ngang của đồ thị hàm số y =
A. y = 13 .
B. y = 23 .

C. 48.

D. 90.

2x+1
3x−1

là đường thẳng có phương trình:
C. y = − 32 .
D. y = − 13 .

Câu 48. Cho khối chóp S .ABC có đáy là tam giác vng cân tại A, AB = 2, S A vng góc với đáy và
S A = 3 (tham khảo hình bên). Thể tích khối chóp đã cho bằng
A. 4.
B. 2.

C. 6.
D. 12.
Câu 49. Cho hàm số bậc ba y = f (x) có đồ thị là đường cong trong hình bên. Có bao nhiêu giá trị
nguyên của tham số m để phương trình f (x) = m có ba nghiệm thực phân biệt?
A. 5.
B. 4.
C. 2.
D. 3.
Câu 50. Cho hàm số y = f (x) có đạo hàm f ′ (x) = (x − 2)2 (1 − x) với mọi x ∈ R. Hàm số đã cho đồng
biến trên khoảng nào dưới đây?
A. (1; 2).
B. (2; +∞).
C. (−∞; 1).
D. (1; +∞).
Trang 4/5 Mã đề 001


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 5/5 Mã đề 001



×