Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thptqg (698)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (154.07 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Dãy số nào sau đây có giới hạn khác 0?
1
1
A. .
B. √ .
n
n
Câu 2. Phát biểu nào sau đây là sai?
1
A. lim k = 0 với k > 1.
n
1
C. lim √ = 0.
n

C.

sin n
.
n

D.



n+1
.
n

B. lim qn = 1 với |q| > 1.
D. lim un = c (Với un = c là hằng số).

Câu 3. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng d :
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng d
2
2
−1
đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 1; 6).
B. ~u = (3; 4; −4).
C. ~u = (1; 0; 2).
D. ~u = (2; 2; −1).
Câu 4. !Dãy số nào sau đây có giới !hạn là 0?
n
n
5
1
.
B. − .
A.

3
3

!n
5
C.
.
3
4

Câu 5. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 :
5
7
2
A. a 3 .
B. a 3 .
C. a 3 .

!n
4
D.
.
e
√3
a2 bằng

Câu 6. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m = 0.
C. m < 0.


5

D. a 8 .
D. m > 0.

Câu 7. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x − 3)e x trên đoạn [0; 2]. Giá
trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. 1.
C. e2016 .
D. 0.
2

Câu 8. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối
√ chóp S .ABCD là

3
3

a 3
2a 3
a3 3
3
A.
.
B.
.

C. a 3.
D.
.
6
3
3

Câu 9. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên S A
vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng (S BD)
bằng √


3a
a 38
3a 58
3a 38
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 10. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 1.
B. 3.
C. 2.
D. +∞.
Câu 11. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 13 năm.
B. 12 năm.
C. 11 năm.
D. 10 năm.
x−1
Câu 12. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng
Trang 1/10 Mã đề 1


A. 2.

B.


6.


C. 2 3.



D. 2 2.

Câu 13.√Thể tích của tứ diện đều √
cạnh bằng a


3
3
a 2
a3 2
a3 2
a 2
.
B.
.
C.
.
D.
.
A.
2
12
6
4
Câu 14. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 16π.
C. 8π.

D. 32π.

Câu 15. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. Vô số.
C. 62.
D. 64.
Câu 16. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {2}.
C. {5}.
D. {3}.
Câu 17. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 10.
B. 4.
C. 12.
D. 11.
Câu 18. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≤ 3.
C. m > 3.
D. m ≥ 3.
Câu 19. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó không rút tiền
ra.

A. 212 triệu.
B. 220 triệu.
C. 216 triệu.
D. 210 triệu.
Câu 20. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3
a3 3
a3 3
3
.
C.
.
D.
.
A. a .
B.
6
3
2
1 − 2n
Câu 21. [1] Tính lim
bằng?
3n + 1
2
2
1
A. 1.

B. − .
C. .
D. .
3
3
3
2
Câu 22. [1224d] Tìm tham số thực m để phương trình log3 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m ≤ .
C. m ≥ .
D. m > .
4
4
4
4
3
2
Câu 23. Hàm số y = x − 3x + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 0.
C. 3.
D. 2.
0 0 0 0
0
Câu 24.√ [2] Cho hình lâp phương

√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 6
a 3
A.
.
B.
.
C.
.
D.
.
2
3
7
2
Câu 25. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 12 cạnh.
C. 10 cạnh.
D. 11 cạnh.
!
!
!
4x
1
2
2016

Câu 26. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T =
.
B. T = 1008.
C. T = 2016.
D. T = 2017.
2017

Trang 2/10 Mã đề 1


Câu 27. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = [2; 1].
C. D = R \ {1; 2}.
2

D. D = R.

Câu 28. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −5.

B. −12.
C. −9.
D. −15.
Câu 29. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Hai hình chóp tứ giác.
Câu 30. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d ⊥ P.
C. d song song với (P).
D. d nằm trên P hoặc d ⊥ P.
2x + 1
x→+∞ x + 1
B. 1.

Câu 31. Tính giới hạn lim

1
.
D. 2.
2
Câu 32. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1079
23
1637
1728

A.
.
B.
.
C.
.
D.
.
4913
68
4913
4913
Câu 33. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
1
ab
A. √
.
B. √
.
C. √
.
D. 2
.
a + b2
2 a2 + b2
a2 + b2
a2 + b2

A. −1.

C.

1
Câu 34. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = 4.
B. −3 ≤ m ≤ 4.
C. m = −3, m = 4.
D. m = −3.
Câu 35. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 14.
C. ln 4.
D. ln 10.
Câu 36. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −10.
C. P = 21.
D. P = −21.
Câu 37. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 17 tháng.
B. 16 tháng.
C. 15 tháng.

D. 18 tháng.
Câu 38. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2

A. −3 − 4 2.
B. 3 − 4 2.
C. −3 + 4 2.


D. 3 + 4 2.

Câu 39. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A. a3 .
B.
.
C.
.
D.
.
12
6
24
Trang 3/10 Mã đề 1


Câu 40. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim

A. 1.

B. 0.

C. +∞.

un
bằng
vn
D. −∞.

Câu 41. Trong khơng gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. .
B. 1.
C. .
D. 3.
2
2
Câu 42. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. 0.
C. Không tồn tại.
D. 9.
Câu 43. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.

D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
Câu 44. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
!2x−1
!2−x
3
3
Câu 45. Tập các số x thỏa mãn


5
5
A. [3; +∞).
B. (+∞; −∞).
C. [1; +∞).
D. (−∞; 1].
Câu 46. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; 3; 3).
C. A0 (−3; −3; −3).
D. A0 (−3; 3; 1).
Câu 47. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.

(1, 01)3
100.(1, 01)3
triệu.
B. m =
triệu.
A. m =
3
(1, 01)3 − 1
100.1, 03
120.(1, 12)3
triệu.
D. m =
C. m =
triệu.
3
(1, 12)3 − 1
Câu 48. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (2; 4; 6).
C. (1; 3; 2).
D. (2; 4; 4).
log 2x
Câu 49. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 log 2x
1 − 4 ln 2x
1 − 2 ln 2x
1

A. y0 =
.
B. y0 =
.
C. y0 = 3
.
D. y0 = 3
.
3
3
x
2x ln 10
x ln 10
2x ln 10
Câu 50. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) =
.
B. f 0 (0) = 1.
C. f 0 (0) = ln 10.
D. f 0 (0) = 10.
ln 10
Câu 51.
√ Thể tích của khối lăng√trụ tam giác đều có cạnh bằng 1 là:

3
3
3
3
A.

.
B.
.
C. .
D.
.
2
12
4
4
Z 3
x
a
a
Câu 52. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
Trang 4/10 Mã đề 1


A. P = 4.

B. P = 16.

C. P = −2.


D. P = 28.

Câu 53. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 4.
C. 8.
D. 5.
x−3 x−2 x−1
x
Câu 54. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (2; +∞).
B. (−∞; 2).
C. (−∞; 2].
D. [2; +∞).
2n − 3
bằng
Câu 55. Tính lim 2
2n + 3n + 1
A. 0.
B. 1.
C. −∞.

D. +∞.

Câu 56. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 3
πa3 3
πa3 6
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
2
3
6
2n2 − 1
Câu 57. Tính lim 6
3n + n4
2
A. 0.
B. .

C. 2.
D. 1.
3
Câu 58. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√ Thể tích khối chóp S 3.ABC


3
a 3
a 2
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
12
6
4
Câu 59. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 3.
C. 2.

D. Vô nghiệm.
Câu 60. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Tứ diện đều.
C. Bát diện đều.

D. Nhị thập diện đều.

Câu 61. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Cả hai câu trên sai.

C. Chỉ có (I) đúng.
D. Chỉ có (II) đúng.



x = 1 + 3t





Câu 62. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=
−1
+
2t
x
=
−1
+

2t
x
=
1
+
3t
x = 1 + 7t
















A. 
D. 
.
y = −10 + 11t . B. 
y = −10 + 11t . C. 
y = 1 + 4t .
y=1+t

















z = 6 − 5t
z = −6 − 5t
z = 1 − 5t
z = 1 + 5t
Câu 63. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45√◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
10a3 3
.
B. 10a3 .
C. 40a3 .
D. 20a3 .
A.
3
Trang 5/10 Mã đề 1



Câu 64. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là


a3 3
a3 3
a3
a3 3
A.
.
B.
.
C.
.
D.
.
4
8
4
12

Câu 65. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √

a 6
a3 2
a3 6
a3 6
.
B.
.
C.
.
D.
.
A.
6
18
6
36
Câu 66. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Bốn mặt.
C. Năm mặt.
D. Hai mặt.
Câu 67.
Z Trong các khẳng định sau, khẳng định nào sai? Z
1
A.
dx = ln |x| + C, C là hằng số.
B.
dx = x + C, C là hằng số.
Z
Z x

xα+1
+ C, C là hằng số.
D.
0dx = C, C là hằng số.
C.
xα dx =
α+1
Câu 68. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
A.
.
B.
.
C.
.
D. a 6.
2
3
6
d = 120◦ .
Câu 69. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A.

.
B. 4a.
C. 2a.
D. 3a.
2
1
Câu 70. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. −2 < m < −1.
C. −2 ≤ m ≤ −1.
D. (−∞; −2) ∪ (−1; +∞).
3

Câu 71. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e2 .
C. e3 .

D. e.

[ = 60◦ , S A ⊥ (ABCD).
Câu 72. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối chóp S .ABCD là

3
3

a 3

a 2
a3 2
3
.
B.
.
C. a 3.
.
A.
D.
6
12
4
Câu 73. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 74. Khối đa diện đều loại {5; 3} có số đỉnh
A. 20.
B. 8.

C. 30.

D. 12.

Câu 75. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (−∞; 0) và (2; +∞). C. (0; +∞).

Câu 76. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.

B. 2.

C. 3.

D. (−∞; 2).
1
3|x−1|

= 3m − 2 có nghiệm duy

D. 1.
Trang 6/10 Mã đề 1


Câu 77. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.
B. 20.

C. 8.

D. 12.

Câu 78. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.

D. 20 đỉnh, 30 cạnh, 20 mặt.
log7 16
Câu 79. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. −2.
B. 4.
C. −4.
D. 2.
Câu 80. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 3.
C. 1.
D. 2.
Câu 81. Cho z là nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z

−1 − i 3
−1 + i 3
A. P = 2.
B. P =
.
C. P = 2i.
D. P =
.
2
2
Câu 82. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.

C. Hai khối chóp tứ giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
Câu 83. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có vơ số.
C. Có một.
D. Có hai.
Câu 84. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (−1; −7).
C. (1; −3).
log 2x

Câu 85. [3-1229d] Đạo hàm của hàm số y =
x2
1
1 − 2 log 2x
1 − 4 ln 2x
.
B. y0 = 3
.
C. y0 =
.
A. y0 =
3
2x ln 10
2x ln 10
x3


D. (0; −2).

D. y0 =

1 − 2 ln 2x
.
x3 ln 10

2

Câu 86. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 5.
B. 7.
C. 6.

D. 8.

Câu 87. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 23.
B. 21.
C. 22.
D. 24.
Câu 88. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
Thể tích khối chóp S .ABC√là
vng góc√với đáy và S C = a 3. √

3

3
2a 6
a 3
a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
9
2
12
4
Câu 89. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
B. f (x) có giá trị lớn nhất trên K.
C. f (x) xác định trên K.
D. f (x) liên tục trên K.
Câu 90. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 2.
B. 3.
C. 1.

D. 5.

Câu 91. Cho hình chóp S .ABCD

√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
góc
với
đáy,
S
C
=
a

√3. Thể tích khối chóp S 3.ABCD là
3
3
a 3
a 3
a
A.
.
B.
.
C.
.
D. a3 .
9
3
3
Trang 7/10 Mã đề 1


Câu 92. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?

!
1
1
A. Hàm số nghịch biến trên khoảng ; 1 .
B. Hàm số đồng biến trên khoảng ; 1 .
3
3
C. Hàm số nghịch biến trên khoảng (1; +∞).

!
1
D. Hàm số nghịch biến trên khoảng −∞; .
3

Câu 93. [1] !Tập xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A. −∞; .
B.
; +∞ .
C. − ; +∞ .
2
2
2

!
1
D. −∞; − .

2

2

Câu 94. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 3 − log2 3.
B. 1 − log2 3.
C. 2 − log2 3.

D. 1 − log3 2.

Câu 95. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 96. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
B.
f (x)dx = f (x).
Z
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Câu 97. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
9
1

2
1
.
B.
.
C. .
D. .
A.
10
10
5
5
Câu 98. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.

B. (I) và (II).

C. (I) và (III).

Câu 99. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 4.
B. −2.
C. −4.

D. (II) và (III).

D. 2.

Câu 100. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 84cm3 .
C. 48cm3 .
D. 64cm3 .
12 + 22 + · · · + n2
Câu 101. [3-1133d] Tính lim
n3
2
1
A. .
B. +∞.
C. .
D. 0.
3
3
1
Câu 102. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 ≤ m ≤ 1.
C. 2 < m ≤ 3.
D. 0 < m ≤ 1.
Trang 8/10 Mã đề 1


Câu 103. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương

ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 9 lần.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 104. [3-12217d] Cho hàm số y = ln
x
+
1
A. xy0 = −ey − 1.
B. xy0 = ey − 1.
C. xy0 = −ey + 1.
D. xy0 = ey + 1.
x2 − 3x + 3
Câu 105. Hàm số y =
đạt cực đại tại
x−2
A. x = 2.
B. x = 3.

C. x = 1.

D. x = 0.

Câu 106. Phát biểu nào sau đây là sai?
1
= 0.
n

1
C. lim qn = 0 (|q| > 1).
D. lim k = 0.
n
Câu 107. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m√2 + 1)2 x trên [0; 1] bằng 8√
A. m = ±1.
B. m = ±3.
C. m = ± 2.
D. m = ± 3.

Câu 108. [1] Biết log6 a = 2 thì log6 a bằng
A. 4.
B. 6.
C. 108.
D. 36.
5
Câu 109. Tính lim
n+3
A. 3.
B. 2.
C. 1.
D. 0.
A. lim un = c (un = c là hằng số).

B. lim

Câu 110. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 18.

B. 12.
C. 27.
D.
.
2
x2 − 12x + 35
Câu 111. Tính lim
x→5
25 − 5x
2
2
A. +∞.
B. −∞.
C. − .
D. .
5
5
Câu 112. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 + n + 1
n2 − 3n
n2 − 2
A. un =
.
B. un =
.
C. un =
.
D. un =
.

5n + n2
(n + 1)2
n2
5n − 3n2
x−1 y z+1
= =

Câu 113. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. 10x − 7y + 13z + 3 = 0.
C. 2x − y + 2z − 1 = 0.
D. −x + 6y + 4z + 5 = 0.
Câu 114. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {3; 3}.

D. {4; 3}.

Câu 115. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. Vô nghiệm.
C. 1.
D. 3.
Câu 116. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là

A. −2 + 2 ln 2.
B. 4 − 2 ln 2.
C. e.
D. 1.

π
Câu 117. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


A. T = 4.
B. T = 2.
C. T = 2 3.
D. T = 3 3 + 1.
Trang 9/10 Mã đề 1


Câu 118. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 5 mặt.
Câu 119. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.

B. 3.

Câu 120. Giá trị giới hạn lim (x2 − x + 7) bằng?

x→−1
A. 9.
B. 0.
cos n + sin n
Câu 121. Tính lim
n2 + 1
A. 1.
B. +∞.

D. 4 mặt.
1
3|x−1|

= 3m − 2 có nghiệm duy

C. 4.

D. 1.

C. 5.

D. 7.

C. −∞.

D. 0.

Câu 122. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB)
√ bằng




a 6
A.
.
B. a 6.
C. 2a 6.
D. a 3.
2

Câu 123. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P = x + 2y thuộc tập nào dưới
!
"
!
" đây?
5
5
D.
;3 .
A. [3; 4).
B. (1; 2).
C. 2; .
2
2
Câu 124. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.

D. Khối lập phương.

[ = 60◦ , S O
Câu 125. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S√BC) bằng


a 57
2a 57
a 57
B.
.
C.
.
D.
.
A. a 57.
19
19
17
Câu 126. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 72cm3 .
C. 46cm3 .
D. 27cm3 .

1−x2

C. Khối tứ diện đều.




− 3m + 4 = 0 có nghiệm
3
C. 0 < m ≤ .
D. m ≥ 0.
4
d = 30◦ , biết S BC là tam giác đều
Câu 128. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
13
9
26
16
Câu 129. Khối đa diện loại {3; 3} có tên gọi là gì?

A. Khối lập phương.
B. Khối bát diện đều. C. Khối 12 mặt đều.
D. Khối tứ diện đều.
Câu 127. [12215d] Tìm m để phương trình 4 x+
3
9
A. 0 ≤ m ≤ .
B. 0 ≤ m ≤ .
4
4

− 4.2 x+

1−x2

Câu 130. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 3.
C. 27.

D. 12.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1

D

1.

2.

3.

C

4. A

5.

C

6. A

B

7.

D

8.

D

9.


D

10.

C

11.

B

12.

C

13.

B

15.

C

17.

C

C

16.
18.


D

19. A

20.

D

21.

B
B

22.

B

23.

24.

B

25.

26.

B


27.

28.

B

29. A
D

30.

C
D
D

31.

32.

C

33.

B

34.

C

35.


B

37.

B

39.

B

D

36.
38.

C

40.

B

41.

42.

B

43.


44.

B

45.

46.

B

47.

48.

B

49.

50.

C
B
C
D

53. A

54.

D


56.

55. A
57. A

C

58. A

59.

60. A

61. A

62. A

63.
B

65.

66. A
68.

D

51.


C

52. A

64.

C

67.
69. A

C
1

C
D
B
C


70.

71. A

C
D

72.
74. A


75.

76.

D

73.

D

B

77. A

78. A

79.

C

80.

D

81. A

82.

D


83.

D

84.

D

85.

D

86.

87.

B

88.

C
D

89.

C

90. A

91.


C

92. A

93.

C

C

94.
96. A
98.

B
D

100.
102.
104.

B

97.

B

99.


B

101. A

C

103. A

B

106.

95.

C

105.

C

107.

C

108. A

109.

D


110. A

111.

D

112. A

113.

114.

115.

B
C

116.
118.

D
B

119.

D

121.

D


123.

D

124.

D

125.

126.

D

127. A
129.

128. A
130.

C

117. A

120. A
122.

B


B

2

C
D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×