TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
[ = 60◦ , S O
Câu 1. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ A đến (S BC) bằng
√ với mặt đáy và S O = a.
√
√
a 57
a 57
2a 57
D.
.
B.
.
C. a 57.
.
A.
19
17
19
Câu 2. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R \ {1; 2}.
B. D = R.
2
C. D = (−2; 1).
D. D = [2; 1].
Câu 3. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 8 m.
C. 16 m.
D. 24 m.
Câu 4. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≤ 3.
C. m > 3.
D. m ≥ 3.
Câu 5. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 30.
C. 20.
D. 10.
C. +∞.
D. 0.
Câu 6. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 1.
B. 2.
π
x
Câu 7. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2
√
3 π6
1 π3
A.
e .
B. 1.
C. e .
2
2
2
x −9
Câu 8. Tính lim
x→3 x − 3
A. +∞.
B. −3.
C. 3.
ln x p 2
Câu 9. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) =
x
8
1
8
A. .
B. .
C. .
9
9
3
Câu 10. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. 9.
C. Không tồn tại.
√
2 π4
D.
e .
2
D. 6.
1
. Giá trị của F 2 (e) là:
3
1
D. .
3
D. 13.
Câu 11. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).
Câu 12. Tính lim
A. 1.
B. (I) và (III).
C. (I) và (II).
B. 2.
C.
2n2 − 1
3n6 + n4
2
.
3
D. Cả ba mệnh đề.
D. 0.
Trang 1/10 Mã đề 1
Câu 13. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 8.
C. 6.
D. 12.
Câu 14. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.
C. Số mặt của khối chóp bằng 2n+1.
D. Số cạnh của khối chóp bằng 2n.
√
Câu 15. Thể tích của khối lập phương có cạnh bằng a 2 √
√
√
2a3 2
3
3
B. V = 2a .
C.
.
D. V = a3 2.
A. 2a 2.
3
Câu 16. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 10 năm.
C. 14 năm.
D. 11 năm.
√
2
Câu 17. [4-1228d] Cho phương trình (2 log3 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vô số.
B. 64.
C. 63.
D. 62.
log2 240 log2 15
−
+ log2 1 bằng
Câu 18. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. 3.
B. −8.
C. 4.
D. 1.
Câu 19. Phát biểu nào sau đây là sai?
1
A. lim k = 0.
n
C. lim qn = 0 (|q| > 1).
B. lim un = c (un = c là hằng số).
1
D. lim = 0.
n
x
x
Câu 20. [2] Tổng các nghiệm của phương trình 9 − 12.3 + 27 = 0 là
A. 10.
B. 12.
C. 3.
D. 27.
Câu 21. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. 1 + 2 sin 2x.
C. 1 − sin 2x.
Câu 22. [2] Tổng các nghiệm của phương trình 3
A. 3.
B. 4.
D. −1 + sin x cos x.
x2 −4x+5
= 9 là
C. 2.
D. 5.
Câu 23. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 27cm3 .
C. 46cm3 .
D. 72cm3 .
Câu 24. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
√
√
√
√
14 3
20 3
A. 6 3.
B.
.
C. 8 3.
D.
.
3
3
Câu 25. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng
√
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3
√
√
2 3
A.
.
B. 3.
C. 1.
D. 2.
3
Trang 2/10 Mã đề 1
Câu 26. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√
√
√ của hàm số. Khi đó tổng M + m
B. 16.
C. 8 3.
D. 8 2.
A. 7 3.
Câu 27. Hàm số nào sau đây khơng có cực trị
1
x−2
A. y = x + .
B. y = x3 − 3x.
C. y =
.
D. y = x4 − 2x + 1.
x
2x + 1
Câu 28. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Có một hoặc hai.
C. Có hai.
D. Khơng có.
d = 60◦ . Đường chéo
Câu 29. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
0
0 0
0 0
◦
BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
2a3 6
a3 6
4a3 6
3
.
B. a 6.
.
D.
.
A.
C.
3
3
3
Câu 30.√Biểu thức nào sau đây không có nghĩa
√
−3
A. (− 2)0 .
B. (−1)−1 .
C.
−1.
D. 0−1 .
Câu 31. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
A. m = ± 2.
B. m = ±1.
C. m = ± 3.
D. m = ±3.
3
2
Câu 32. Giá√trị cực đại của hàm số y =
√ x − 3x − 3x + 2
√
A. −3 + 4 2.
B. −3 − 4 2.
C. 3 + 4 2.
√
D. 3 − 4 2.
Câu 33. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.
B. Khơng có câu nào C. Câu (I) sai.
D. Câu (II) sai.
sai.
Câu 34. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√
√
a3
a3
2a3 3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
6
3
3
8
Câu 35. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 64.
C. 82.
D. 96.
Câu 36. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
1079
1728
23
A.
.
B.
.
C.
.
D.
.
4913
4913
4913
68
Câu 37. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. 0.
C. 22016 .
D. e2016 .
Câu 38. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là 4.
B. Phần thực là −3, phần ảo là −4.
C. Phần thực là 3, phần ảo là 4.
D. Phần thực là 3, phần ảo là −4.
Trang 3/10 Mã đề 1
Câu 39. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.
B. Chỉ có (I) đúng.
C. Cả hai câu trên đúng. D. Cả hai câu trên sai.
Câu 40. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp 8 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp đơi.
Câu 41.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 8.
C. 27.
D. 9.
un
Câu 42. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. −∞.
B. 0.
C. 1.
D. +∞.
√
Câu 43. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là
√
√
√
πa3 3
πa3 3
πa3 3
πa3 6
.
B. V =
.
C. V =
.
D. V =
.
A. V =
6
6
2
3
Câu 44. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 3.
C. 2.
D. 5.
Câu 45. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
!
1
1
B. Hàm số nghịch biến trên khoảng −∞; .
A. Hàm số nghịch biến trên khoảng ; 1 .
3!
3
1
C. Hàm số đồng biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
Câu 46. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Trục ảo.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Đường phân giác góc phần tư thứ nhất.
Câu 47. Tính lim
x→5
x2 − 12x + 35
25 − 5x
B. +∞.
2
2
.
D. − .
5
5
Câu 48.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?
A.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
B.
f (x)g(x)dx =
f (x)dx g(x)dx.
Z
Z
Z
Z
Z
C.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
D.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
A. −∞.
C.
Câu 49. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 1.
B. 3.
C. 7.
D. 2.
Câu 50. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −5.
B. −6.
C. 5.
2
D. 6.
Câu 51. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
A. 1.
B. 2.
C. 2.
D. 10.
Trang 4/10 Mã đề 1
Câu 52. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A. .
B. 7.
C.
.
D. 5.
2
2
Câu 53. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
.
B.
.
C. a 6.
.
A.
D.
2
3
6
Câu 54. [1] Đạo hàm của làm số y = log x là
ln 10
1
1
1
A. y0 =
.
B.
.
C. y0 = .
D. y0 =
.
x
10 ln x
x
x ln 10
Câu 55. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
9
5
23
.
B.
.
C.
.
D. − .
A. −
100
100
25
16
2
Câu 56. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a bằng
1
1
A. 2.
B. −2.
C. .
D. − .
2
2
Câu 57. [4-1246d] Trong tất cả√các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 1.
B. 5.
C. 2.
D. 3.
Câu 58. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 27 lần.
Câu 59. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 + 2; m = 1.
−2
C. M = e − 2; m = 1.
D. M = e−2 + 1; m = 1.
Câu 60. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim− f (x) = f (a) và lim− f (x) = f (b).
D. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
n−1
Câu 61. Tính lim 2
n +2
A. 0.
B. 2.
C. 3.
Câu 62. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 3.
B. 2e.
C. .
e
x→b
D. 1.
D. 2e + 1.
tan x + m
Câu 63. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. (−∞; −1) ∪ (1; +∞). C. [0; +∞).
D. (1; +∞).
1
Câu 64. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = R.
C. D = (1; +∞).
D. D = R \ {1}.
Câu 65. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (−∞; 2).
D. (−∞; 0) và (2; +∞).
C. (0; 2).
Câu 66. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Tăng lên (n − 1) lần. B. Tăng lên n lần.
C. Không thay đổi.
D. Giảm đi n lần.
Trang 5/10 Mã đề 1
2−n
Câu 67. Giá trị của giới hạn lim
bằng
n+1
A. −1.
B. 2.
C. 0.
D. 1.
Câu 68. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m < .
C. m ≤ .
D. m ≥ .
4
4
4
4
Câu 69. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
C. Cả ba câu trên đều sai.
D. F(x) = G(x) trên khoảng (a; b).
Câu 70. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
Thể tích khối chóp S .ABCD là
√
√ phẳng vng góc với 3(ABCD).
3
3
√
a 3
a 2
a 3
.
B.
.
C.
.
D. a3 3.
A.
4
2
2
√
Câu 71. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
3
a 6
a 6
a3 2
a3 6
A.
.
B.
.
C.
.
D.
.
18
36
6
6
Câu 72. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {2}.
B. {5; 2}.
C. {3}.
D. {5}.
Câu 73. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≥ 3.
C. m > 3.
D. m ≤ 3.
Câu 74. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. −2.
C. 2.
D. 4.
Câu 75. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.
B. Khối tứ diện.
C. Khối lăng trụ tam giác.
D. Khối lập phương.
Câu 76. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
A. 5.
B. 68.
C.
.
D. 34.
17
Câu 77. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 216 triệu.
B. 210 triệu.
C. 212 triệu.
D. 220 triệu.
Câu 78. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 79. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là
√
3
3
√
a 15
a 6
a3 5
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Trang 6/10 Mã đề 1
Câu 80. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. Vơ nghiệm.
C. 2.
D. 1.
Câu 81. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối chóp S .ABCD là √
√
√
2a3 3
a3 3
a3 3
3
.
B. a 3.
.
D.
.
A.
C.
3
6
3
Câu 82. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 1.
B. m > 0.
C. m > −1.
D. m ≥ 0.
Câu 83. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (2; +∞).
C. (0; 2).
D. R.
Câu 84. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
B.
D. a 6.
A. a 3.
.
C. 2a 6.
2
Câu 85. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
A. 5.
B. 5.
C. .
5
√
D. 25.
Câu 86. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d song song với (P).
C. d ⊥ P.
D. d nằm trên P hoặc d ⊥ P.
1
Câu 87. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. m = 4.
B. m = −3.
C. −3 ≤ m ≤ 4.
D. m = −3, m = 4.
Câu 88. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
đến đường√thẳng BD0 bằng
√
√
√
abc b2 + c2
b a2 + c2
a b2 + c2
c a2 + b2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 89. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. f (x) có giới hạn hữu hạn khi x → a.
x→a
C. lim+ f (x) = lim− f (x) = +∞.
x→a
D. lim+ f (x) = lim− f (x) = a.
x→a
x→a
x→a
Câu 90.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) − g(x)]dx =
A.
Z
B.
Z
C.
Z
D.
g(x)dx, với mọi f (x), g(x) liên tục trên R.
f (x)dx −
Z
Z
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Câu 91. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 9 mặt.
C. 6 mặt.
D. 3 mặt.
Câu 92. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 30.
C. 12.
D. 8.
Trang 7/10 Mã đề 1
Câu 93. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.
B. 10 năm.
C. 8 năm.
D. 7 năm.
Câu 94. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. (4; 6, 5].
C. [6, 5; +∞).
D. (−∞; 6, 5).
Câu 95. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 2.
B. 1.
C. 3.
D. 0.
! x3 −3mx2 +m
1
nghịch biến trên
Câu 96. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
khoảng (−∞; +∞)
A. m = 0.
B. m ∈ (0; +∞).
C. m , 0.
D. m ∈ R.
Câu 97. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều. C. Khối 20 mặt đều.
D. Khối 12 mặt đều.
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 98. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. [−3; +∞).
C. (−3; +∞).
D. (−∞; −3).
Câu 99. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. .
B. 1.
C. .
D. 3.
2
2
Câu 100. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. −2e2 .
C. 2e4 .
D. −e2 .
Câu 101. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 = 2 x . ln x.
B. y0 = x
.
C. y0 = 2 x . ln 2.
D. y0 =
.
2 . ln x
ln 2
Câu 102. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 13.
B. log2 13.
C. 2020.
D. log2 2020.
Câu 103. Tính mơ đun của số phức√z biết (1 + 2i)z2 = 3 + 4i. √
4
A. |z| = 5.
B. |z| = 5.
C. |z| = 5.
√
D. |z| = 2 5.
Câu 104.
√ Thể tích của tứ diện đều
√cạnh bằng a
√
√
a3 2
a3 2
a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
4
12
2
6
Câu 105. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. n2 lần.
C. n3 lần.
D. 3n3 lần.
Câu 106. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 387 m.
C. 25 m.
D. 1587 m.
1 + 2 + ··· + n
Câu 107. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 1.
1
C. lim un = 0.
D. lim un = .
2
Trang 8/10 Mã đề 1
Câu 108. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 8%.
C. 0, 6%.
D. 0, 5%.
Câu 109. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m ≤ .
C. m > .
D. m ≥ .
4
4
4
4
log(mx)
Câu 110. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m ≤ 0.
C. m < 0 ∨ m > 4.
D. m < 0.
Z 3
a
a
x
Câu 111. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = −2.
B. P = 28.
C. P = 4.
D. P = 16.
Câu 112. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = 3S h.
D. V = S h.
3
2
log(mx)
= 2 có nghiệm thực duy nhất
Câu 113. [3-1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m ≤ 0.
B. m < 0.
C. m < 0 ∨ m = 4.
D. m < 0 ∨ m > 4.
Câu 114. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 2.
x−2
Câu 115. Tính lim
x→+∞ x + 3
A. −3.
B. 2.
C. 4.
2
C. − .
3
3
Câu 116. Hàm số y = −x + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; −1).
B. (−1; 1).
C. (−∞; 1).
D. 3.
D. 1.
D. (1; +∞).
d = 120◦ .
Câu 117. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 2a.
B. 4a.
C. 3a.
D.
.
2
Câu 118. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 8.
C. 6.
D. 10.
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
Câu 119. [12210d] Xét các số thực dương x, y thỏa mãn log3
x + 2y
nhất Pmin của P√ = x + y.
√
√
√
9 11 + 19
9 11 − 19
2 11 − 3
18 11 − 29
A. Pmin =
. B. Pmin =
. C. Pmin =
.
D. Pmin =
.
9
9
3
21
Câu 120. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3
3
8a 3
8a 3
4a 3
a 3
A.
.
B.
.
C.
.
D.
.
9
3
9
9
6
Câu 121. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
. Tính
3x
+
1
Z 1
f (x)dx.
0
A. 4.
B. −1.
C. 6.
D. 2.
Trang 9/10 Mã đề 1
Câu 122. Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A. Bát diện đều.
B. Nhị thập diện đều. C. Thập nhị diện đều. D. Tứ diện đều.
Câu 123. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.
B. 1.
C. 0.
D. 2.
x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. [2; +∞).
C. (−∞; 2).
D. (2; +∞).
log7 16
Câu 125. [1-c] Giá trị của biểu thức
bằng
15
log7 15 − log7 30
A. −2.
B. 4.
C. 2.
D. −4.
√
√
2
4n + 1 − n + 2
bằng
Câu 126. Tính lim
2n − 3
3
A. 1.
B. +∞.
C. 2.
D. .
2
Câu 127. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng (S AB). Thiết diện của
√mặt phẳng (AIC) có diện
√tích là
√ hình chóp S .ABCD với
2
2
2
2
11a
a 7
a 2
a 5
A.
.
B.
.
C.
.
D.
.
32
8
4
16
√
√
Câu 128.
Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
x
+
3
+
√
√6 − x
√
A. 3 2.
B. 3.
C. 2 3.
D. 2 + 3.
Câu 124. [4-1213d] Cho hai hàm số y =
Câu 129. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
√
√
2
−
1
−
3i lần lượt√l
Câu 130. Phần thực và√phần ảo của số phức
z
=
√
√
A. Phần thực là 1√− 2, phần ảo là −√ 3.
B. Phần thực là √2 − 1, phần ảo là −√ 3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 2, phần ảo là 1 − 3.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
D
1.
2.
C
3.
5. A
7.
D
9. A
B
4.
D
6.
D
8.
D
10. A
11.
C
12.
D
13.
C
14.
D
16.
D
15. A
17.
D
18.
C
19.
22.
B
29.
D
C
39.
28.
B
D
D
34.
B
36. A
B
38. A
C
41. A
43.
D
40.
B
42.
B
44. A
45. A
47.
B
32. A
35. A
37.
26.
30.
B
31. A
33.
B
24. A
25.
27.
C
20.
21. A
23.
B
46.
48.
C
49.
D
C
B
50. A
51. A
52. A
53.
D
54.
55. A
56.
D
B
57.
C
58.
D
59.
C
60.
D
61. A
62. A
63.
D
64.
65.
D
66.
67. A
68.
1
C
D
C
69. A
70.
71. A
72.
B
D
73.
B
74.
75.
B
76.
C
78.
C
77.
79.
C
B
80.
B
81. A
D
82.
83.
C
C
84.
D
D
85.
D
86.
87.
D
88.
C
90.
C
89. A
D
91.
93. A
92.
B
94.
B
95.
D
96. A
97.
D
98. A
99.
C
100.
101.
C
102.
B
104.
B
103.
B
C
105.
109.
106. A
D
107.
D
108. A
B
110. A
111.
C
112. A
113.
C
114.
C
115.
D
116.
117.
D
118.
C
120.
C
122.
C
119.
C
121. A
123.
D
124.
125.
D
126. A
127.
B
B
B
128. A
129. A
130.
2
B