Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (42)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.92 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1.
Z Trong các khẳng định sau, khẳng định nào sai? Z
A.
0dx = C, C là hằng số.
B.
dx = x + C, C là hằng số.
Z
Z
xα+1
1
C.
xα dx =
+ C, C là hằng số.
D.
dx = ln |x| + C, C là hằng số.
α+1
x
2

Câu 2. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 3 − log2 3.
B. 1 − log3 2.


C. 1 − log2 3.

D. 2 − log2 3.

2

Câu 3. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1
B. √ .
C. 3 .
A. 2 .
e
e
2 e
Câu 4. Giá trị lớn nhất của hàm số y =
A. 1.

B. −2.

D.

1
.
2e3

2mx + 1
1
trên đoạn [2; 3] là − khi m nhận giá trị bằng

m−x
3
C. −5.
D. 0.


Câu 5. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là

3

a3 3
a 3
a3
3
.
B. a 3.
.
D.
.
A.
C.
3
4
12

Câu 6. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab. Giá
trị nhỏ nhất của biểu thức P = "x + 2y! thuộc tập nào dưới "đây?!
5

5
A. [3; 4).
B.
;3 .
C. 2; .
D. (1; 2).
2
2
Câu 7. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 9 năm.
C. 7 năm.
D. 8 năm.
Câu 8. Bát diện đều thuộc loại
A. {4; 3}.
B. {3; 4}.

C. {5; 3}.

D. {3; 3}.

Câu 9. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +

g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.

B. Cả hai câu trên đúng. C. Cả hai câu trên sai.

D. Chỉ có (I) đúng.

Câu 10. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 9.
B. Không tồn tại.
C. 0.

D. 13.

2n − 3
bằng
+ 3n + 1
B. +∞.

D. 0.

Câu 11. Tính lim
A. 1.

2n2

C. −∞.


Trang 1/10 Mã đề 1


d = 30◦ , biết S BC là tam giác đều
Câu 12. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
9
16
26
13
Câu 13. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 20.
C. 12.

D. 8.
Câu 14. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m < .
C. m > .
D. m ≥ .
4
4
4
4
Câu 15. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a =
.
C. log2 a = − loga 2.
D. log2 a = loga 2.
loga 2
log2 a
2−n
Câu 16. Giá trị của giới hạn lim
bằng
n+1
A. 0.

B. 1.
C. −1.
D. 2.
Câu 17. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a 3
a
B. a.
C. .
D.
.
A. .
3
2
2
Câu 18. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (1; 0; 2).
B. ~u = (2; 2; −1).

C. ~u = (3; 4; −4).
D. ~u = (2; 1; 6).
x
Câu 19. Tính diện tích hình phẳng giới hạn bởi các đường
√ y = xe , y = 0, x = 1.
1
3
3
B. .
C.
.
D. 1.
A. .
2
2
2
Câu 20. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là

3
3
a 3
a3 3
a3 6
2a 6
A.
.
B.

.
C.
.
D.
.
9
4
2
12
2n2 − 1
Câu 21. Tính lim 6
3n + n4
2
A. 0.
B. 2.
C. 1.
D. .
3
Câu 22. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều. C. Khối 12 mặt đều.
D. Khối tứ diện đều.

Câu 23. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Chỉ có (I) đúng.
x−2

Câu 24. Tính lim
x→+∞ x + 3
2
A. 2.
B. − .
3

C. Cả hai đều sai.

D. Cả hai đều đúng.

C. −3.

D. 1.
Trang 2/10 Mã đề 1


x+2
Câu 25. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 2.
B. 3.
C. 1.
D. Vô số.
8
Câu 26. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.

B. 64.
C. 82.
D. 96.
Câu 27. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 9 mặt.
C. 4 mặt.

D. 6 mặt.

Câu 28. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > −1.
B. m > 0.
C. m > 1.

D. m ≥ 0.

Câu 29. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 3 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 18 lần.
Câu 30. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1728
1079
1637
23
.

B.
.
C.
.
D.
.
A.
68
4913
4913
4913
Câu 31. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 32. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.

Câu 33. [1] Biết log6 a = 2 thì log6 a bằng
A. 6.
B. 108.
C. 36.

D. 4.

Câu 34. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),

C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; 3; 1).
C. A0 (−3; 3; 3).
D. A0 (−3; −3; −3).
Câu 35. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 − 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4e + 2
4 − 2e
4e + 2
4 − 2e
Câu 36. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 15
a3 15
a3 5
a3
A.

.
B.
.
C.
.
D.
.
25
5
25
3
log(mx)
Câu 37. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m ≤ 0.
B. m < 0.
C. m < 0 ∨ m > 4.
D. m < 0 ∨ m = 4.
Câu 38. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. .
B. .
C. 3.
D. 1.
2
2
Trang 3/10 Mã đề 1



Câu 39. [1] Đạo hàm của hàm số y = 2 x là
A. y0 = 2 x . ln x.

B. y0 = 2 x . ln 2.

C. y0 =

Câu 40. [12214d] Với giá trị nào của m thì phương trình
A. 2 ≤ m ≤ 3.

B. 0 ≤ m ≤ 1.

1
.
ln 2

1
3|x−2|

D. y0 =

1
2 x . ln

x

.


= m − 2 có nghiệm

C. 0 < m ≤ 1.

D. 2 < m ≤ 3.

Câu 41. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 3).
C. (2; 4; 6).
D. (2; 4; 4).
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
B. 45.
C. 26.
D. 67.

Câu 42. Tìm m để hàm số y =
A. 34.

Câu 43. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp đôi.
C. Tăng gấp 8 lần.
D. Tăng gấp 6 lần.
Câu 44. Dãy số nào sau đây có giới hạn khác 0?
1

sin n
A. .
B.
.
n
n

1
C. √ .
n
√3
Câu 45. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
A. 3.
B. − .
C. −3.
3

D.

n+1
.
n

D.

1
.
3


Câu 46. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
1
ab
A. √
.
B. √
.
C. √
.
D. 2
.
a + b2
a2 + b2
a2 + b2
2 a2 + b2
Câu 47. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
A. V = S h.
B. V = 3S h.
C. V = S h.
2

1
D. V = S h.
3

Câu 48. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,

lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 220 triệu.
B. 212 triệu.
C. 216 triệu.
D. 210 triệu.
x−3
bằng?
x→3 x + 3
A. 1.
B. 0.
x2 − 9
Câu 50. Tính lim
x→3 x − 3
A. +∞.
B. 6.
Câu 49. [1] Tính lim

C. −∞.

D. +∞.

C. 3.

D. −3.

Câu 51. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?

A. 2.
B. 3.
C. Vô số.
D. 1.

Câu 52. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 6
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
3
6
2
6
Trang 4/10 Mã đề 1



Câu 53.√Thể tích của tứ diện đều √
cạnh bằng a
a3 2
a3 2
A.
.
B.
.
12
2
log7 16
Câu 54. [1-c] Giá trị của biểu thức
log7 15 − log7
A. 2.
B. −4.


a3 2
C.
.
6
15
30


a3 2
D.
.
4


bằng
C. −2.

D. 4.

Câu 55. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt phẳng vng góc với (ABCD).
Thể tích khối chóp

√ S .ABCD là
3
3
3

a 3
a 3
a 2
.
B. a3 3.
.
D.
.
A.
C.
2
2
4
x2
Câu 56. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e

1
1
C. M = e, m = .
D. M = e, m = 1.
A. M = e, m = 0.
B. M = , m = 0.
e
e
q
2
Câu 57. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 4].
C. m ∈ [0; 1].
D. m ∈ [−1; 0].
3
2
Câu 58. Giá
√ trị cực đại của hàm số y =
√ x − 3x − 3x + 2

A. 3 − 4 2.
B. −3 + 4 2.
C. −3 − 4 2.


D. 3 + 4 2.


Câu 59. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 1587 m.
C. 25 m.
D. 387 m.
Câu 60. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
Câu 61. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = −2.
C. m = −3.

D. m = 0.

Câu 62. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
2x + 1
Câu 63. Tính giới hạn lim
x→+∞ x + 1

1
A. 2.
B. .
C. 1.
D. −1.
2
Câu 64. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vuông
√ góc với đáy, S C = a3 √3. Thể tích khối chóp S .ABCD là
a3 3
a 3
a3
A.
.
B.
.
C. a3 .
D.
.
3
9
3
1
Câu 65. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. −2 < m < −1.
C. (−∞; −2] ∪ [−1; +∞). D. −2 ≤ m ≤ −1.



Câu 66. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt l √

A. Phần thực là √2, phần ảo là 1 − √
3.
B. Phần thực là 1√− 2, phần ảo là −√ 3.
C. Phần thực là 2 − 1, phần ảo là − 3.
D. Phần thực là 2 − 1, phần ảo là 3.
Trang 5/10 Mã đề 1


Z
Câu 67. Cho

1

xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b

0

1
1
.
C. 0.
D. .
2
4
0 0 0
Câu 68. [4] Cho lăng trụ ABC.A B C có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N

và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng



14 3
20 3
A.
.
B. 6 3.
C. 8 3.
D.
.
3
3
Câu 69. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 1; m = 1.
C. M = e−2 + 2; m = 1.
D. M = e2 − 2; m = e−2 + 2.
A. 1.

B.

Câu 70. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục ảo.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.

 π π
Câu 71. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 1.
C. 3.
D. 7.
!x
1
1−x
Câu 72. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. − log3 2.
B. 1 − log2 3.
C. − log2 3.
D. log2 3.
Câu 73. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (2; 2).
C. (−1; −7).

D. (0; −2).

Câu 74. Khối đa diện đều loại {3; 5} có số mặt
A. 30.
B. 8.

D. 12.


C. 20.

Câu 75. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích khối chóp S .ABCD là √



a3 3
a3 3
2a3 3
3
A.
.
B. a 3.
C.
.
D.
.
3
3
6
Câu 76. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 7, 2.
C. 72.
D. 0, 8.

Câu 77. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

A. Vô số.
B. 64.
C. 63.
D. 62.
Câu 78. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 15 tháng.
C. 17 tháng.
D. 18 tháng.
Câu 79. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp
√ là√
A. 8, 16, 32.
B. 2, 4, 8.
C. 2 3, 4 3, 38.
D. 6, 12, 24.
Câu 80. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. 32π.
C. 8π.
D. V = 4π.
Trang 6/10 Mã đề 1


Câu 81. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67

A. −2.
B.
.
C. −7.
D. −4.
27
Câu 82. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 21.
C. 24.
D. 23.
Câu 83. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. Vơ nghiệm.
C. 1.
D. 3.
Câu 84. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. −2 ≤ m ≤ 2.
C. m ≥ 3.
D. −3 ≤ m ≤ 3.
Câu 85. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
C. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)

dx = log |u(x)| + C.
D.
u(x)
Câu 86. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng M + m


B. 16.
C. 7 3.
D. 8 3.
A. 8 2.
Câu 87. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = −2.
C. x = −8.
D. x = 0.
log 2x
Câu 88. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1
1 − 2 log 2x
1 − 4 ln 2x
.
B. y0 = 3
.
C. y0 = 3
.

D. y0 =
A. y0 =
.
3
2x ln 10
x ln 10
2x ln 10
x3
Câu 89. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 18.
B. 12.
C. 27.
D.
.
2
Câu 90. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = R.
C. D = R \ {1}.
D. D = (0; +∞).
1
Câu 91. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; +∞).
B. (1; 3).
C. (−∞; 3).
D. (−∞; 1) và (3; +∞).
Câu 92. Hàm số nào sau đây khơng có cực trị

A. y = x4 − 2x + 1.

B. y = x3 − 3x.

C. y =

x−2
.
2x + 1

1
D. y = x + .
x

3

Câu 93. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e.
C. e5 .

D. e2 .

Câu 94. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 1.
C. Vô nghiệm.

D. 3.


Câu 95. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
A. −∞; .
B. −∞; − .
C. − ; +∞ .
2
2
2

!
1
D.
; +∞ .
2
Trang 7/10 Mã đề 1


4

Câu 96. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 :
5
2
5
A. a 3 .
B. a 3 .
C. a 8 .


√3

a2 bằng
7

D. a 3 .

[ = 60◦ , S O
Câu 97. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc

√ với mặt đáy và S O = a. Khoảng cách từ O đến (S
√ BC) bằng

a 57
2a 57
a 57
.
B. a 57.
.
D.
.
A.
C.
19
17
19
Câu 98. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.





5 13
A. 2 13.
.
B. 2.
C. 26.
D.
13
Câu 99. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 3.
B. +∞.
C. 1.
D. 2.
Câu 100. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
a
5a
2a
A.
.
B. .
C.
.
D.
.

9
9
9
9
Câu 101. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Ba mặt.
C. Bốn mặt.
D. Năm mặt.
Câu 102. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. 13.
C. log2 13.
D. 2020.
Câu 103. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. R.
C. (2; +∞).

D. (−∞; 1).

Câu 104. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích
hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 3.
C. 0, 4.
D. 0, 2.
Câu 105. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3.
Tính f (2) + f (4)?
A. 4.

B. 11.
C. 12.
D. 10.
t
9
Câu 106. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao
9 + m2
cho f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 1.
B. 2.
C. Vô số.
D. 0.
Câu 107. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. −3.
C. 0.
D. 3.
Câu 108. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {2}.
B. {3}.
C. {5}.
D. {5; 2}.
Câu 109. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. e.
C. 1.
D. 4 − 2 ln 2.
Câu 110. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 20 mặt đều.


C. Khối tứ diện đều.

D. Khối 12 mặt đều.

Câu 111. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích√khối chóp S .ABMN là √


2a3 3
5a3 3
4a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
2
3
3
3
Trang 8/10 Mã đề 1


Câu 112. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực

x≥1
A. m > 3.
B. m ≤ 3.
C. m < 3.
D. m ≥ 3.
Câu 113. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
B. 1.
C. 2.
A. .
2

D.

ln 2
.
2

Câu 114. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A.
.
B. .
C. 5.
D. 7.
2
2
Câu 115. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.

B. 9 mặt.
C. 6 mặt.

D. 8 mặt.

Câu 116. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Câu 117. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 1].
C. m ∈ [0; 2].

log23

q
x+ log23 x + 1+4m−1 =

D. m ∈ [0; 4].

Câu 118. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=

=
và d0 :
=
=
2
3
−5
3
−2
−1
x−2 y−2 z−3
x−2 y+2 z−3
=
=
.
B.
=
=
.
A.
2
2
2
2
3
4
x y z−1
x y−2 z−3
C. = =
.

D. =
=
.
1 1
1
2
3
−1
Câu 119. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 3.
B. a 6.
C.
.
D. 2a 6.
2
Câu 120. Cho hàm số y = x3 − 2x2 + x +!1. Mệnh đề nào dưới đây đúng?
!
1
1
A. Hàm số đồng biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng ; 1 .
3
3
!

1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng −∞; .
3
Câu 121. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0)
lần lượt là hình chiếu của B, C lên các !cạnh AC, AB. Tọa độ hình!chiếu của A lên BC là !
8
7
5
A. (2; 0; 0).
B.
; 0; 0 .
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
Câu 122.
!n Dãy số nào sau đây có giới
!n hạn là 0?
4
5
A.
.
B. − .
e
3


!n
5
C.
.
3

!n
1
D.
.
3

Câu 123. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?

A. y = log √2 x.
B. y = loga x trong đó a = 3 − 2.
C. y = log π4 x.
D. y = log 14 x.
Trang 9/10 Mã đề 1


d = 60◦ . Đường chéo
Câu 124. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





4a3 6

a3 6
2a3 6
.
B.
.
C.
.
D. a3 6.
A.
3
3
3
Z 3
a
a
x
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
Câu 125. Cho I =

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = −2.
B. P = 4.
C. P = 28.
D. P = 16.
Câu 126. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).

B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim+ f (x) = f (a) và lim+ f (x) = f (b).
D. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

x→a

x→b

Câu 127. Vận tốc chuyển động của máy bay là v(t) = 6t + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 6510 m.
B. 2400 m.
C. 1202 m.
D. 1134 m.
2

Câu 128. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 3 nghiệm.
B. Vơ nghiệm.
C. 1 nghiệm.

D. 2 nghiệm.


Câu 129. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 46cm3 .
C. 27cm3 .
D. 64cm3 .
Câu 130. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
C. T = e + 1.
D. T = 4 + .
A. T = e + 3.
B. T = e + .
e
e
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
2.

D

3. A


4.

D

5. A

6.

B
B

C

1.

7.

B

8.

9.

B

10.

11.

D


12.

13. A

14. A

15. A

16.

17.

C
D
C

18. A

B
D

20.

D

21. A

22.


D

23. A

24.

D

25. A

26. A

28. A

29.

19.

30.

D

31.

34.

C

39.


B
D

42. A
44.

D

43.

C

45.

D
D

47.

48.

B

49.

50.

B

51. A


B

53. A
55. A

B

57.

56. A
B

61.

B

63. A

B

64.

D

66.

D

59. A


60. A

68.

B
C

B

52. A

D

41.

46.

62.

C

37.

40.

58.

D


35.

36. A

54.

B

33.

32. A

38.

C

65.
67.

C
B

69. A
1

D
B


70.


D

71.

72.

C

73.

74.

C

75.

B
D
C

76. A

77.

D

78. A

79.


D

81. A

82. A

83. A

84.
D

85.
C

87.
89. A
91.

D

D

86.

B

88.

B


90.

B

92.

C

93.

C

94.

B

95.

C

96.

B

97.

D

99.


D

101.

100. A

B

102.

103. A
105.

D

98.

C

C

104.

B

106.

B


107.

B

108.

109.

B

110.

D

112.

D

111. A
C

113.
115.

114.

C

B


116.

B

117. A

D

118.

C

119.

B

120.

121.

B

122.

D

124.

D


123. A
125.

126.

B

128.

127. A
129.

130. A

C

2

B

B
D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×