Tải bản đầy đủ (.pdf) (5 trang)

Đề ôn tập thpt qg môn toán (839)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (124.25 KB, 5 trang )

Tài liệu Pdf free LATEX

ĐỀ ÔN TẬP THPT QG MÔN TOÁN
NĂM HỌC 2022 – 2023
THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề thi 001

Câu 1. Với mọi số phức z, ta có |z + 1|2 bằng
A. z2 + 2z + 1.
B. z · z + z + z + 1.

C. |z|2 + 2|z| + 1.

D. z + z + 1.

Câu 2. Cho A = 1 + i2 + i4 + · · · + i4k−2 + i4k , k ∈ N∗ . Hỏi đâu là phương án đúng?
A. A = 0.
B. A = 2k.
C. A = 1.
D. A = 2ki.
2017
4 + 2i + i
có tổng phần thực và phần ảo là
Câu 3. Số phức z =
2−i
A. 1.
B. 2.
C. -1.
D. 3.
Câu 4. Tính


√ mãn z(2 − i) + 13i = 1.
√ mô-đun của số phức z thỏa

5 34
34
A. |z| =
.
B. |z| =
.
C. |z| = 34.
D. |z| = 34.
3
3
Câu 5. Cho hai số phức z1 = 1 + 2i và z2 = 2 − 3i. Khi đó số phức w = 3z1 − z2 + z1 z2 có phần ảo bằng
bao nhiêu?
A. 10.
B. −9.
C. −10.
D. 9.
(1 + i)(2 + i) (1 − i)(2 − i)
Câu 6. Cho số phức z thỏa mãn z =
+
. Trong tất cả các kết luận sau, kết luận
1−i
1+i
nào đúng?
1
A. z là số thuần ảo.
B. z = z.
D. |z| = 4.

C. z = .
z
Câu 7. Cho hình chóp đều S .ABCD có chiều cao a, AC = 2a (tham khảo hình bên). Khoảng cách từ B
đến mặt
phẳng (S CD) bằng




2
A. 2 a.
B. 2a.
C. 33 a.
D. 2 3 3 a.
Câu 8. Tích tất cả các nghiệm của phương trình ln2 x + 2 ln x − 3 = 0 bằng
A. −3.
B. e12 .
C. −2.
D.

1
.
e3

Câu 9. Cho hình chóp S .ABC có đáy là tam giác vng tại B, S A vng góc với đáy và S A = AB (tham
khảo hình bên). Góc giữa hai mặt phẳng (S BC) và (ABC) bằng
A. 90◦ .
B. 45◦ .
C. 30◦ .
D. 60◦ .

= y−1
=
Câu 10. Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x−2
2
2
phẳng đi qua A và chứa d. Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng
A. 113 .
B. 13 .
C. 5.
D. 1.

z−1
.
−3

Gọi (P) là mặt

Câu 11. Cho khối nón có đình S , chiều cao bằng 8 và thể tích bằng 800π
. Gọi A và B là hai điểm thuộc
3
đường√
tròn đáy sao cho AB = 12, khoảng cách từ tâm của đường tròn đáy đến mặt √
phẳng (S AB) bằng
5
24
A. 8 2.
B. 24 .
C. 5 .
D. 4 2.
Câu 12. Trên tập hợp số phức, xét phương trình z2 − 2(m + 1)z + m2 = 0(m là tham số thực). Có bao

nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1 , z2 thỏa mãn |z1 | + |z2 | = 2?
A. 2.
B. 3.
C. 1.
D. 4.
2
x
Câu 13. Tính tích tất cả các nghiệm của phương trình (log2 (4x))2 + log2 ( ) = 8
8
1
1
1
1
A. .
B.
.
C. .
D. .
6
128
64
32
0
d
Câu 14. Cho hình chóp S .ABC có đáy ABC
√ là tam giác vng tại A; BC = 2a; ABC = 60 . Gọi Mlà
trung điểm cạnh BC, S A = S C = S M = a 5. Tính khoảng
√ cách từ S đến mặt phẳng
√ (ABC).
A. 2a.

B. a.
C. a 2.
D. a 3.
Trang 1/5 Mã đề 001



2x − x2 + 3
Câu 15. Đồ thị hàm số y =
có số đường tiệm cận đứng là:
x2 − 1
A. 2.
B. 1.
C. 0.

D. 3.

Câu 16. Trong không gian với hệ trục tọa độ Oxyz, cho A(1; 3; 5), B(2; 4; 6). Gọi M là điểm nằm trên
đoạn AB sao cho MA = 2MB. Tìm tọa độ điểm M
5 11 17
2 7 21
7 10 31
4 10 16
B. M( ; ; ).
C. M( ; ; ).
D. M( ; ; ).
A. M( ; ; ).
3 3 3
3 3 3
3 3 3

3 3 6
3x
cắt đường thẳng y = x + m tại
Câu 17. Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y =
x−2
7
hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1; ) làm trọng tâm.
3
A. m = 1.
B. Không tồn tại m.
C. m = −2.
D. m = 2.
Câu 18. Gọi l, h, R lần lượt là độ dài đường sinh, chiều cao và bán kính đáy của hình nón (N). Diện tích
tồn phầnS tp của hình nón (N) bằng
A. S tp = πRl + πR2 .
B. S tp = πRh + πR2 .
C. S tp = 2πRl + 2πR2 . D. S tp = πRl + 2πR2 .

Câu 19. (Toán Học Tuổi Trẻ - Lần 8) Xét số phức z thỏa mãn 2|z − 1| + 3|z − i| ≤ 2 2. Mệnh đề nào
dưới đây đúng ?
1
3
1
3
B. < |z| < .
C. |z| < .
D. |z| > 2.
A. ≤ |z| ≤ 2.
2
2

2
2
z+i+1
Câu 20. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
là số thuần ảo?
z + z + 2i
A. Một Elip.
B. Một đường thẳng.
C. Một Parabol.
D. Một đường tròn.
Câu 21. (Chuyên Ngoại Ngữ - Hà Nội) Cho số phức z thỏa mãn |z| = 1. Tìm giá trị lớn nhất của biểu
thức T = |z + 1| √
+ 2|z − 1|.



A. max T = 3 5.
B. max T = 2 10.
C. max T = 3 2.
D. max T = 2 5.

Câu 22. (KHTN – Lần 1) Trong các số phức z thỏa điều kiện |(1 + i)z + 1 − 7i| = 2, tìm max |z|.
A. max |z| = 6.
B. max |z| = 7.
C. max |z| = 4.
D. max |z| = 3.
Câu 23. Cho số phức z thỏa mãn |z − 4| + |z + 4| = 10. Giá trị lớn nhất và giá trị nhỏ nhất của |z| lần lượt

A. 5 và 4.
B. 4 và 3.

C. 5 và 3.
D. 10 và 4.

Câu 24. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|. √


A. |z| = 5 2.
B. |z| = 33.
C. |z| = 50.
D. |z| = 10.
Câu 25. Cho số phức z thỏa mãn |i + 2z| = |z − 3i|. Tập hợp điểm biểu diễn các số phức w = (1 − i)z + 3
là một đường thẳng có phương trình là
A. x − y + 8 = 0.
B. x − y + 4 = 0.
C. x + y − 8 = 0.
D. x + y − 5 = 0.






z−z


=2?
Câu 26. Tìm tập hợp các điểm M biểu diễn số phức z sao cho




z − 2i

A. Một Parabol.
B. Một đường thẳng.
C. Một Elip.
D. Một đường tròn.

Câu 27. Biết số phức z thỏa mãn |z − 3 − 4i| = 5 và biểu thức T = |z + 2|2 − |z − i|2 đạt giá trị lớn nhất.
Tính |z|. √


A. |z| = 5 2.
B. |z| = 50.
C. |z| = 33.
D. |z| = 10.
z+i+1
là số thuần ảo?
z + z + 2i
C. Một đường thẳng.
D. Một đường tròn.

Câu 28. Tìm tập hợp các điểm M biểu diễn số phức z sao cho w =
A. Một Elip.

B. Một Parabol.

Câu 29. Cho các số phức z thoả mãn (1 + z)2 là số thực. Tập hợp điểm M biểu diễn số phức z là
A. Hai đường thẳng.
B. Một đường thẳng.

C. Đường tròn.
D. Parabol.
Trang 2/5 Mã đề 001


Câu 30. Cho z1 , z2 là hai số phức thỏa mãn |2z − i| = |2 + iz|, biết |z1 − z2 | = 1. Tính giá trị biểu thức
P = |z1 + z√2 |.



2
3
A. P =
.
B. P = 3.
.
C. P = 2.
D. P =
2
2
1+i
Câu 31. GọiM là điểm biểu diễn số phức z = 3 − 4i và M ′ là điểm biểu diễn của số phức z′ =
z
2
trong mặt phẳng tọa độ Oxy. Tính diện tích tam giác OMM ′ .
25
15
15
25
A. S = .

B. S = .
C. S = .
D. S = .
4
4
2
2






−2 − 3i
Câu 32. Tìm giá trị lớn nhất của |z| biết rằng z thỏa mãn điều kiện



z + 1


= 1.
3 − 2i

B. max |z| = 1.
C. max |z| = 2.
D. max |z| = 3.
A. max |z| = 2.
Câu 33. Đường cong trong hình bên là đồ thị của hàm số nào?
A. y = x4 + 1.

B. y = −x4 + 1 .
C. y = −x4 + 2x2 + 1 .

D. y = x4 + 2x2 + 1 .

Câu 34. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = 1 + 2ty = 2 + (m − 1)tz = 3 − t.
Tìm tất cả các giá trị của tham số m để d có thể viết được dưới dạng chính tắc?
A. m , −1.
B. m = 1.
C. m , 1.
D. m , 0.
R5 dx
Câu 35. Biết
= ln T. Giá trị của T là:
2x − 1
1

A. T = 3.
B. T = 3.
C. T = 9.
D. T = 81.
Câu 36. Cho a, b là hai số thực dương bất kì. Mệnh đề nào dưới đây đúng?
A. ln(ab2 ) = ln a + (ln b)2 .
B. ln(ab2 ) = ln a + 2 ln b.
a
ln a
C. ln( ) =
.
D. ln(ab) = ln a. ln b .
b

ln b
Câu 37. Cho hàm số f (x) thỏa mãn f ′′ (x) = 12x2 + 6x − 4 và f (0) = 1, f (1) = 3. Tính f (−1).
A. f (−1) = 3.
B. f (−1) = −5.
C. f (−1) = −1.
D. f (−1) = −3.
R
Câu 38. Tính nguyên hàm cos 3xdx.
1
1
D. − sin 3x + C.
A. 3 sin 3x + C.
B. −3 sin 3x + C.
C. sin 3x + C.
3
3
Câu 39. Cho hàm số y = f (x) có bảng biến thiên như sau:
x

−∞

y′

+∞

−2



+∞


−2
y
−∞

−2

Đồ thị hàm số y = f (x) có bao nhiêu đường tiệm cận đứng và tiệm cận ngang?
A. 1.
B. 4.
C. 2.
D. 3.
Câu 40. Hàm số nào trong các hàm số dưới đây luôn nghịch biến trên R?
x−3
A. y =
.
B. y = −x2 + 3x + 5.
C. y = −x3 − 2x + 3.
D. y = x4 − 2x2 + 1.
5−x
Câu 41. Xét hàm số f (x) = −x4 + 2x2 + 3 trên đoạn [0; 2]. Trong các khẳng định sau, khẳng định nào
sai?
A. Hàm số f (x) đạt giá trị lớn nhất trên đoạn [0; 2] tại x = 1.
B. Giá trị lớn nhất của hàm số f (x) trên đoạn [0; 2] bằng 4.
C. Hàm số f (x) đạt giá trị nhỏ nhất trên đoạn [0; 2] tại x = 0.
D. Giá trị nhỏ nhất của hàm số f (x) trên đoạn [0; 2] bằng −5.
Trang 3/5 Mã đề 001


2x − 3

. Trong các khẳng định sau, khẳng định nào đúng?
−x + 2
A. Hàm số đồng biến trên khoảng (−2; 2).
B. Hàm số đồng biến trên khoảng (−2; +∞).

Câu 42. Cho hàm số y =

C. Hàm số đồng biến trên khoảng (2; +∞).

D. Hàm số đồng biến trên tập xác định của nó.

Câu 43. Tìm giá trị nhỏ nhất của hàm số f (x) = 2x3 − 3x2 − 12x + 10 trên đoạn [−3; 3].
A. 1.

B. −35.

C. 17.

D. −10.

C. 18.

D. 21.

Câu 44. Hình đa diện dưới đây có bao nhiêu cạnh?

A. 15.

B. 12.


Câu 45. Cho
A. F ′ (x) =

R

2
.
x2

1
x

dx = F(x) + C. Khẳng định nào dưới đây đúng?
B. F ′ (x) = 1x .

C. F ′ (x) = ln x.

D. F ′ (x) = − x12 .

Câu 46. Trên mặt phẳng tọa độ, biết tập hợp điểm biểu diễn các số phức z thỏa mãn |z + 2i| = 1 là một
đường tròn. Tâm của đường tròn đó có tọa độ là
A. (0; 2).

B. (−2; 0).

C. (0; −2).

Câu 47. Trong không gian Oxyz, cho đường thẳng d :
A. Q(1; 2; −3).


B. M(2; −1; −2).

x−1
2

=

y−2
−1

C. P(1; 2; 3).

D. (2; 0).
=

z+3
.
−2

Điểm nào dưới đây thuộc d?
D. N(2; 1; 2).

Câu 48. Cho hàm số y = f (x) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
A. (1; 3).

B. (3; +∞).

C. (0; 2).


D. (−∞; 1).

Câu 49. Cho hàm số f (x) liên tục trên R. Gọi
R 2 F(x), G(x) là hai nguyên hàm của f (x) trên R thỏa mãn
F(4) + G(4) = 4 và F(0) + G(0) = 1. Khi đó 0 f (2x)dx bằng
A. 43 .

B. 3.

C. 23 .

D. 6.

Câu 50. Trong không gian Oxyz, mặt phẳng (P) : x + y + z + 1 = 0 có một vectơ pháp tuyến là:




A. →
n1 = (−1; 1; 1).
B. →
n3 = (1; 1; 1).
C. →
n2 = (1; −1; 1).
D. →
n4 = (1; 1; −1).
Trang 4/5 Mã đề 001


- - - - - - - - - - HẾT- - - - - - - - - -


Trang 5/5 Mã đề 001


×