Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (55)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.9 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B thuộc
∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và AC = BD = a.
Khoảng√cách từ A đến mặt phẳng (BCD) bằng



a 2
a 2
.
B. 2a 2.
.
C. a 2.
D.
A.
4
2
Câu 2. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1728
1079
1637
23


.
B.
.
C.
.
D.
.
A.
68
4913
4913
4913
Câu 3. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
120.(1, 12)3
100.1, 03
triệu.
B. m =
triệu.
A. m =
3
(1, 12)3 − 1
100.(1, 01)3
(1, 01)3
C. m =
triệu.
D. m =

triệu.
3
(1, 01)3 − 1
Câu 4. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không rút
tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo.
Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban
đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 11 năm.
C. 10 năm.
D. 14 năm.
Câu 5. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 6. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém môn Toán nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm môn Toán là
C 40 .(3)10
C 20 .(3)30
C 10 .(3)40
C 20 .(3)20
A. 50 50 .
B. 50 50 .
C. 50 50 .
D. 50 50 .
4
4

4
4


Câu 7. Phần thực √
và phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt l√

A. Phần thực là √2 − 1, phần ảo là √
3.
B. Phần thực là 2, √
phần ảo là 1 − √
3.
C. Phần thực là 2 − 1, phần ảo là − 3.
D. Phần thực là 1 − 2, phần ảo là − 3.
Câu 8. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 3 mặt.
C. 4 mặt.

D. 6 mặt.

1
5

Câu 9. [2] Tập xác định của hàm số y = (x − 1) là
A. D = R.
B. D = (1; +∞).
C. D = R \ {1}.


D. D = (−∞; 1).

Câu 10. Mệnh đề nào sau đây sai?
A. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Trang 1/10 Mã đề 1


Z
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
D.
f (x)dx = f (x).

f (x)dx = F(x) + C.

Câu 11. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m ≥ 3.
C. m > 3.
D. m < 3.
Câu 12. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 2.
C. 3.
D. Vô nghiệm.
Câu 13. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 1 nghiệm.

B. Vơ nghiệm.
C. 3 nghiệm.
Câu 14. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.

B. 2.

C. 1.

D. 2 nghiệm.
1
3|x−1|

= 3m − 2 có nghiệm duy

D. 4.

Câu 15. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (0; 1).
D. Hàm số nghịch biến trên khoảng (−∞; 0).
Câu 16. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm mặt.
B. Ba mặt.
C. Bốn mặt.
n−1
Câu 17. Tính lim 2
n +2

A. 0.
B. 3.
12 + 22 + · · · + n2
Câu 18. [3-1133d] Tính lim
n3
A. 0.
B. +∞.

C. 2.

D. Hai mặt.

D. 1.

1
2
.
D. .
3
3
Câu 19. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
S .ABCD là
của AD, biết
a 5. Thể tích khối chóp √
√ S H ⊥ (ABCD), S A =
3
3
3
2a 3

2a
4a 3
4a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 20. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 =
.
B. y0 = x
.
C. y0 = 2 x . ln 2.
D. y0 = 2 x . ln x.
ln 2
2 . ln x
C.

Câu 21. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.

B. Ba mặt.
C. Một mặt.

D. Hai mặt.

Câu 22. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e2 − 2; m = e−2 + 2.
C. M = e−2 + 2; m = 1.
D. M = e−2 + 1; m = 1.
!
x+1
Câu 23. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
2016
4035
A.
.
B.
.
C. 2017.
D.
.
2018
2017
2018
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]

Câu 24. Tìm m để hàm số y =
x+m
A. 34.
B. 45.
C. 67.
D. 26.
Trang 2/10 Mã đề 1


Câu 25. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −15.
C. −9.
D. −5.
Câu 26. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 − 2e
1 + 2e
.
B. m =
.
C. m =
.
A. m =
4 − 2e
4e + 2
4 − 2e

1 + 2e

.
4e + 2

D. m =

! x3 −3mx2 +m
1
Câu 27. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ (0; +∞).
B. m , 0.
C. m ∈ R.
D. m = 0.
Câu 28. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
x+3
Câu 29. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. Vơ số.
B. 3.
C. 2.
D. 1.
x+2

Câu 30. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. 3.
C. 2.
D. Vô số.
Câu 31. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. .
B. 6.
C. 9.
D. .
2
2
2
x − 12x + 35
Câu 32. Tính lim
x→5
25 − 5x
2
2
A. +∞.
B. .
C. −∞.
D. − .
5

5
3

Câu 33. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e2 .
B. e5 .
C. e3 .

D. e.

Câu 34. Dãy số nào sau đây có giới hạn khác 0?
sin n
1
B.
.
A. .
n
n

1
D. √ .
n

C.

n+1
.
n

Câu 35. Bát diện đều thuộc loại

A. {5; 3}.
B. {3; 3}.

C. {3; 4}.

Câu 36. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) xác định trên K.

B. f (x) liên tục trên K.
D. f (x) có giá trị lớn nhất trên K.

D. {4; 3}.

Câu 37. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a 6
a3 3
a3 6
.
B.
.
C.
.

D.
.
A.
48
24
24
8
Câu 38. Cho z là nghiệm của phương trình√ x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z
−1 + i 3
−1 − i 3
A. P = 2.
B. P =
.
C. P =
.
D. P = 2i.
2
2
Trang 3/10 Mã đề 1


x−3
Câu 39. [1] Tính lim
bằng?
x→3 x + 3
A. 0.
B. −∞.

C. 1.


D. +∞.

Câu 40. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Một tứ diện đều và bốn hình chóp tam giác đều.
B. Năm hình chóp tam giác đều, khơng có tứ diện đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Năm tứ diện đều.

Câu 41. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 58
a 38
3a
3a 38
A.
.
B.
.
C.
.
D.
.
29
29
29

29
Câu 42. Dãy! số nào có giới hạn bằng 0?
!n
n
−2
6
n3 − 3n
2
.
B. un = n − 4n.
C. un =
.
D. un =
.
A. un =
5
3
n+1
Câu 43. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. n3 lần.
C. 3n3 lần.
D. n lần.
Câu 44.! Dãy số nào sau đây có giới! hạn là 0?
n
n
4
5
A.
.

B. − .
e
3

!n
5
C.
.
3

!n
1
D.
.
3

Câu 45. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 46. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
2a 3
a 3
A.

.
B. a 3.
C.
.
D.
.
3
2
2
ln2 x
m
Câu 47. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 135.
B. S = 24.
C. S = 32.
D. S = 22.
2x + 1
Câu 48. Tính giới hạn lim
x→+∞ x + 1
1
A. 1.
B. 2.
C. −1.
D. .
2
2

3
7n − 2n + 1
Câu 49. Tính lim 3
3n + 2n2 + 1
2
7
A. - .
B. .
C. 1.
D. 0.
3
3
Câu 50. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 8.
C. 20.
D. 30.
Câu 51. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. .
B. 5.
C.
.
D. 7.
2
2
Trang 4/10 Mã đề 1



Câu 52. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
A. 15 tháng.
B. 16 tháng.
C. 18 tháng.
D. 17 tháng.
Câu 53. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 3.
B. 2e.
C. .
e
Câu 54. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −6.
B. 6.
C. −5.

D. 2e + 1.

2

D. 5.

Câu 55. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
B. 3.

C. 1.
D. .
A. .
2
2
2n + 1
Câu 56. Tìm giới hạn lim
n+1
A. 0.
B. 3.
C. 1.
D. 2.
Câu 57. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
. Thể tích khối lăng trụ đã cho bằng
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
3 √

2 3
A. 3.
.
D. 2.
B. 1.
C.
3
tan x + m

Câu 58. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (1; +∞).
B. [0; +∞).
C. (−∞; 0] ∪ (1; +∞). D. (−∞; −1) ∪ (1; +∞).
Câu 59. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 6
a3 2
a3 3
a 3
.
B.
.
C.
.
D.
.
A.
24
48

16
48
Câu 60.
Z Các khẳng định nào sau
Z đây là sai?
Z
Z
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. B.
f (x)dx = F(x) + C ⇒
!0
Z
Z
Z
C.
k f (x)dx = k
f (x)dx, k là hằng số.
D.
f (x)dx = f (x).
A.

f (t)dt = F(t) + C.

x−1 y z+1
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ

nhất.
A. 2x − y + 2z − 1 = 0.
B. 2x + y − z = 0.
C. 10x − 7y + 13z + 3 = 0.
D. −x + 6y + 4z + 5 = 0.

Câu 61. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

Câu 62. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
A. −2.
B. − .
C. 2.
D. .
2
2
3
2
Câu 63. [2D1-3] Tìm giá trị của tham số m để f (x) = −x + 3x + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
Trang 5/10 Mã đề 1


5
5
B. − < m < 0.
C. m ≤ 0.
A. m > − .
4

4
Câu 64. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 4 mặt.

D. 9 mặt.

Câu 65. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 5.
B. 0.

D. 9.

C. 7.

D. m ≥ 0.

Câu 66. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng
√M + m

A. 8 2.
B. 8 3.
C. 7 3.
D. 16.
Câu 67. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019

A. 1.
B. 22016 .
C. e2016 .
D. 0.
Câu 68. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 12.
B.
.
C. 18.
D. 27.
2
Câu 69. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều. C. Khối tứ diện đều.
D. Khối 12 mặt đều.
Câu 70. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
3
3
1
C. .
D.
.
A. 1.
B. .
2
2
2
Câu 71. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là

A. (−∞; 6, 5).
B. (4; 6, 5].
C. [6, 5; +∞).
D. (4; +∞).
Câu 72. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 12 cạnh.
Câu 73. [2] Tổng các nghiệm của phương trình 3
A. 1 − log2 3.
B. 1 − log3 2.

C. 10 cạnh.
x−1

x2

D. 9 cạnh.

.2 = 8.4 là
C. 2 − log2 3.
x−2

D. 3 − log2 3.
[ = 60◦ , S A ⊥ (ABCD).
Câu 74. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√chóp S .ABCD là

a3 2

a3 3
a3 2
.
B.
.
C.
.
D. a3 3.
A.
12
4
6
Câu 75. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 9 mặt.
D. 4 mặt.
Z 3
a
x
a
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
Câu 76. Cho I =

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = −2.
B. P = 16.

C. P = 28.
D. P = 4.
Câu 77. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Câu 78. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a 3
a
a
A.
.
B. a.
C. .
D. .
2
3
2
Trang 6/10 Mã đề 1


Câu 79. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. 2020.
C. log2 2020.
D. 13.
Câu 80. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.

B. 12.

C. 30.

D. 10.

Câu 81. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 8.

C. 6.

D. 5.

Câu 82. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2

A. 4.

B. −1.

C. 6.

Z

6

3

3x + 1


. Tính

1

f (x)dx.
0

D. 2.

Câu 83. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 12 m.
C. 24 m.
D. 8 m.
Câu 84. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.
B. Khối tứ diện.
C. Khối lập phương.
D. Khối lăng trụ tam giác.
Câu 85. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 27 m.
C. 387 m.
D. 1587 m.

Câu 86. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = S h.
2
3
2−n
Câu 87. Giá trị của giới hạn lim
bằng
n+1
A. 0.
B. 1.
C. −1.
Câu 88. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 30.
C. 20.
!2x−1
!2−x
3
3
Câu 89. Tập các số x thỏa mãn


5
5
A. (+∞; −∞).
B. [3; +∞).

C. (−∞; 1].

D. V = 3S h.

D. 2.
D. 8.

D. [1; +∞).

Câu 90. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 50, 7 triệu đồng.
C. 20, 128 triệu đồng. D. 70, 128 triệu đồng.
Câu 91. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 92. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Câu 93. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp 8 lần.
C. Tăng gấp 6 lần.

D. Tăng gấp đôi.
Trang 7/10 Mã đề 1


1

Câu 94. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.

B. 2.

3|x−1|

C. 3.

= 3m − 2 có nghiệm duy

D. 1.

Câu 95. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là 3, phần ảo là 4.
Câu 96. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 2.
B. 0.
C. 1.


D. 3.

Câu 97. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Có vơ số.
C. Có một.
D. Khơng có.
Câu 98. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.

C. Khối bát diện đều.

D. Khối 12 mặt đều.

Câu 99. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).

B. Cả ba mệnh đề.

Câu 100. [1-c] Giá trị của biểu thức
A. −2.

log7 16

log7 15 − log7

B. 4.

C. (II) và (III).
15
30

D. (I) và (III).

bằng

C. 2.

D. −4.

Câu 101. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d ⊥ P.
C. d nằm trên P.
D. d song song với (P).
Câu 102. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 2.

B. +∞.

C. 3.


D. 1.
2

2

sin x
Câu 103. [3-c]
+ 2cos x √
lần lượt là
√ Giá trị nhỏ nhất√và giá trị lớn nhất của hàm số f (x) = 2
A. 2 và 2 2.
B. 2 và 3.
C. 2 và 3.
D. 2 2 và 3.

Câu 104. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD

√ là
3
3
3
3
8a 3
4a 3
8a 3
a 3
A.
.

B.
.
C.
.
D.
.
3
9
9
9
d = 300 .
Câu 105. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
0
Độ dài cạnh bên CC = 3a. Thể tích V √của khối lăng trụ đã cho.


a3 3
3a3 3
3
3
A. V = 3a 3.
B. V =
.
C. V = 6a .
D. V =
.
2
2

Câu 106. [1] Biết log6 a = 2 thì log6 a bằng

A. 108.
B. 36.
C. 6.
D. 4.
Trang 8/10 Mã đề 1


Câu 107. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
5
23
9
A.
.
B. − .
C. −
.
D.
.
100
16
100
25


Câu 108. √Tìm giá trị lớn nhất của hàm số y = x + 3 + √6 − x

A. 2 + 3.
B. 3.

C. 2 3.
D. 3 2.
Câu 109. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (III) sai.
C. Câu (I) sai.
D. Câu (II) sai.
sai.
Câu 110. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. −3 ≤ m ≤ 3.
C. m ≤ 3.
D. m ≥ 3.
Câu 111.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
0dx = C, C là hằng số.

A.
Z
C.

dx = x + C, C là hằng số.

Câu 112. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = 1 + ln x.


1
dx = ln |x| + C, C là hằng số.
x
Z
xα+1
+ C, C là hằng số.
D.
xα dx =
α+1
B.

C. y0 = ln x − 1.

D. y0 = x + ln x.

Câu 113. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 2ac
3b + 3ac
3b + 3ac
.
B.
.
C.
.
D.
.
A.
c+1

c+3
c+2
c+2
log 2x
Câu 114. [1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1 − 4 ln 2x
1
1 − 2 log 2x
A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.
D. y0 =
.
3
x ln 10
2x ln 10
2x ln 10
x3
Câu 115. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. −2e2 .
C. 2e4 .
D. 2e2 .
Câu 116. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?

A. 6 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
Câu 117. [1] Tập
! xác định của hàm số! y = log3 (2x + 1) là
!
1
1
1
B. −∞; .
C. − ; +∞ .
A. −∞; − .
2
2
2

!
1
D.
; +∞ .
2

Câu 118. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 119. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
C. F(x) = G(x) trên khoảng (a; b).

D. Cả ba câu trên đều sai.
Trang 9/10 Mã đề 1


3
2
x
Câu 120. [2]
√ Tìm m để giá trị lớn nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8√
B. m = ±3.
C. m = ±1.
D. m = ± 3.
A. m = ± 2.

Câu 121.
Cho hàm số
Z
Z f (x), g(x) liên tục trên R. Trong các
Z mệnh đề sau, mệnhZđề nào sai? Z
k f (x)dx = f

A.
Z
C.

f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.


B.
Z
D.

( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
f (x)g(x)dx =
f (x)dx g(x)dx.

8
Câu 122. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 82.
C. 96.
D. 64.
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
Câu 123. [12210d] Xét các số thực dương x, y thỏa mãn log3
x + 2y
nhất Pmin của P√= x + y.



18 11 − 29
9 11 − 19
2 11 − 3

9 11 + 19
A. Pmin =
. B. Pmin =
. C. Pmin =
.
D. Pmin =
.
21
9
3
9
Câu 124. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Tứ diện đều.
B. Thập nhị diện đều. C. Nhị thập diện đều. D. Bát diện đều.

Câu 125. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới
" đây?
!
5
5
A. 2; .
B. [3; 4).
C.
;3 .
D. (1; 2).
2
2
Câu 126. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường

thẳng BB0 và AC 0 bằng
1
1
ab
ab
A. √
.
B. √
.
C. √
.
D. 2
.
2
2
2
2
2
2
a + b2
a +b
2 a +b
a +b
Câu 127. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính
.ABC theo a

√ thể tích của khối chóp 3S√
3
a 15

a3
a3 5
a 15
.
B.
.
C.
.
D.
.
A.
5
25
3
25
Câu 128. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = R \ {1}.
C. D = R \ {0}.
D. D = (0; +∞).
Câu 129. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




20 3
14 3
B.

.
C.
.
D. 8 3.
A. 6 3.
3
3
x
Câu 130. [12211d] Số nghiệm của phương trình 12.3 + 3.15 x − 5 x = 20 là
A. 2.
B. Vô nghiệm.
C. 3.
D. 1.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2.

3.

D


4.

5. A

D
B

6. A

7.

C

8.

9.

B

10. A

11.

B

12. A
D

13.

15.

C

C

14.

C

16.

B
D

18.

17. A
19.

D

20.

C

21. A

22. A


23. A

24. A

25. A

26.

B

28.

B

27.
29.

D
B

30.

31.
33.

D
B

35.
37.


32.

C

36.

B

41. A

42.

C
D

46. A
C

48.

49. A

50. A

51. A

52.

53. A


54.

55.

D

56.

57.

D

58. A

59.

D

60. A

66.

B
B
C
D

62. A


C

63. A
68.

B

44.

B

45. A

61.

C

38. A
40. A

47.

B

34.

39. A
43.

C


D

65.

D

67.

D

69. A

C
1


70. A

71.
C

72.
74.

75. A
D

77. A


78.

B

79. A

80.

B

81.

82. A
B

85.
C

87.

88.

C

89.

90.

C


91.

B

94.
96.

C

83. A

86.

92.

C

73.

B

76.

84.

B

D
B


98.

C
D
C

93.

B

95.

B

97. A
99. A

C

100.

D

101. A

102. A
104.

B


C

103.

D

105.

D

106.

D

107.

108.

D

109. A

C

110.

B

111.


D

112.

B

113.

D

114. A
116.

115. A
B

117.

C

118. A

119. A

120. A

121.

122. A


123.

C

125.

C

124.
126.

B

127.

C

128. A
130.

129. A
D

2

D

B




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×