TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 14.
C. ln 12.
D. ln 4.
Câu 2.
Z Các khẳng định
Z nào sau đây là sai?
Z
f (x)dx, k là hằng số.
B.
f (x)dx = F(x) +C ⇒
!0
Z
Z
Z
f (x)dx = f (x).
C.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. D.
A.
k f (x)dx = k
Câu 3. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. 2.
C. −1.
log 2x
Câu 4. [1229d] Đạo hàm của hàm số y =
là
x2
1 − 4 ln 2x
1 − 2 ln 2x
1
A. y0 =
.
B. y0 = 3
.
C. y0 = 3
.
3
2x ln 10
x ln 10
2x ln 10
Z
f (u)dx = F(u) +C.
D. 1.
D. y0 =
1 − 2 log 2x
.
x3
Câu 5. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 0.
C. 13.
D. 9.
Câu 6. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối 12 mặt đều.
D. Khối bát diện đều.
C. Khối tứ diện đều.
x2
trên đoạn [−1; 1]. Khi đó
ex
C. M = e, m = 0.
D. M = e, m = 1.
Câu 7. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y =
1
A. M = e, m = .
e
1
B. M = , m = 0.
e
Câu 8. [1] Đạo hàm của hàm số y = 2 x là
A. y0 = 2 x . ln 2.
B. y0 = 2 x . ln x.
C. y0 =
√
1
2 x . ln
Câu 9. Thể tích của khối lập phương có cạnh bằng a 2
√
3
√
√
2a
2
B. V = a3 2.
C.
.
A. 2a3 2.
3
x
.
D. y0 =
1
.
ln 2
D. V = 2a3 .
Câu 10. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
B.
f (x)dx = f (x).
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
Z
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
Câu 11. [1] Đạo hàm của làm số y = log x là
1
1
A. y0 =
.
B. y0 = .
x ln 10
x
2n + 1
Câu 12. Tính giới hạn lim
3n + 2
3
A. .
B. 0.
2
C.
1
.
10 ln x
D. y0 =
C.
2
.
3
D.
ln 10
.
x
1
.
2
Trang 1/10 Mã đề 1
Câu 13. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y z−1
x−2 y−2 z−3
=
=
.
B. = =
.
A.
2
3
4
1 1
1
x y−2 z−3
x−2 y+2 z−3
C. =
=
.
D.
=
=
.
2
3
−1
2
2
2
Câu 14. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 15. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. −1 + sin x cos x.
C. 1 − sin 2x.
D. 1 + 2 sin 2x.
3a
, hình chiếu vng
Câu 16. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
a
a 2
2a
a
B. .
C.
.
D.
.
A. .
4
3
3
3
Câu 17. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. −5.
C. Không tồn tại.
D. −3.
Câu 18. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a = loga 2.
C. log2 a =
.
D. log2 a = − loga 2.
loga 2
log2 a
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 19. [3] Cho hàm số f (x) = ln 2017 − ln
x
4035
2017
2016
A.
.
B.
.
C.
.
D. 2017.
2018
2018
2017
Câu 20. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; +∞).
B. [6, 5; +∞).
C. (4; 6, 5].
D. (−∞; 6, 5).
Câu 21. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 3 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 27 lần.
x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (−∞; 2].
C. (−∞; 2).
D. (2; +∞).
Câu 22. [4-1213d] Cho hai hàm số y =
Câu 23. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 10 mặt.
C. 8 mặt.
D. 4 mặt.
ln2 x
m
Câu 24. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 135.
B. S = 22.
C. S = 32.
D. S = 24.
Câu 25. Phát biểu nào sau đây là sai?
A. lim un = c (un = c là hằng số).
1
C. lim k = 0.
n
B. lim qn = 0 (|q| > 1).
1
D. lim = 0.
n
Trang 2/10 Mã đề 1
Câu 26. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|
√
√
√
12 17
A.
.
B. 5.
C. 34.
D. 68.
17
Câu 27. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 12.
C. 30.
D. 20.
Câu 28. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
A. 96.
B. 64.
C. 81.
Câu 29. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 8 mặt.
D. 82.
8
x
D. 7 mặt.
Câu 30. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→b
x→a
x→b
C. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→b
x→a
x→b
D. lim− f (x) = f (a) và lim+ f (x) = f (b).
Câu 31. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là
√
√
3
3
3
√
a
3
2a
3
a
3
B.
.
C.
.
D.
.
A. a3 3.
3
3
6
Câu 32. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (−∞; 0) và (1; +∞). C. (0; 1).
D. (−1; 0).
Câu 33. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
C. T = e + 1.
D. T = e + .
A. T = e + 3.
B. T = 4 + .
e
e
4x + 1
bằng?
Câu 34. [1] Tính lim
x→−∞ x + 1
A. 4.
B. −4.
C. 2.
D. −1.
Câu 35. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 8π.
B. 32π.
C. V = 4π.
D. 16π.
Câu 36. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.
√
√
√
√
5 13
A. 2 13.
B.
.
C. 26.
D. 2.
13
Câu 37. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
Thể tích khối chóp S .ABCD là
√ phẳng vng góc với 3(ABCD).
√
3
3
√
a 2
a 3
a 3
A.
.
B.
.
C.
.
D. a3 3.
4
2
2
Câu 38. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 20 triệu đồng.
D. 2, 22 triệu đồng.
Trang 3/10 Mã đề 1
Câu 39. [2] Tổng các nghiệm của phương trình 3
A. log2 3.
B. − log2 3.
1−x
!x
1
=2+
là
9
C. − log3 2.
Câu 40. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (1; −3).
C. (−1; −7).
D. 1 − log2 3.
D. (2; 2).
Câu 41. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 220 triệu.
B. 210 triệu.
C. 212 triệu.
D. 216 triệu.
log 2x
là
Câu 42. [3-1229d] Đạo hàm của hàm số y =
x2
1 − 2 ln 2x
1 − 4 ln 2x
1 − 2 log 2x
A. y0 = 3
.
B. y0 =
.
C. y0 =
.
3
x ln 10
2x ln 10
x3
Câu 43. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 1.
B. 5.
C. 3.
D. y0 =
2x3
1
.
ln 10
D. 2.
Câu 44. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
B. .
C. .
D. 4.
A. .
8
4
2
Câu 45. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).
B. Cả ba mệnh đề.
C. (I) và (III).
D. (II) và (III).
π π
3
Câu 46. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 3.
B. −1.
C. 7.
D. 1.
x+2
Câu 47. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 3.
B. Vô số.
C. 1.
D. 2.
Câu 48.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 1.
C. 10.
D. 2.
Câu 49. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng
√
√
√
a 2
a 2
A. 2a 2.
B.
.
C.
.
D. a 2.
4
2
1
Câu 50. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = ey + 1.
B. xy0 = ey − 1.
C. xy0 = −ey − 1.
D. xy0 = −ey + 1.
Trang 4/10 Mã đề 1
Câu 51. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 3.
B. 2e.
C. .
D. 2e + 1.
e
Câu 52. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m > .
C. m < .
D. m ≤ .
A. m ≥ .
4
4
4
4
2
2n − 1
Câu 53. Tính lim 6
3n + n4
2
A. 0.
B. .
C. 1.
D. 2.
3
Câu 54. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC theo a
√
√
a3 15
a3
a3 15
a3 5
A.
.
B.
.
C.
.
D.
.
5
3
25
25
Câu 55. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 15 tháng.
B. 18 tháng.
C. 16 tháng.
D. 17 tháng.
d = 30◦ , biết S BC là tam giác đều
Câu 56. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
9
16
26
13
2n + 1
Câu 57. Tìm giới hạn lim
n+1
A. 2.
B. 0.
C. 3.
D. 1.
Câu 58. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
B. aα+β = aα .aβ .
C. aαβ = (aα )β .
D. aα bα = (ab)α .
A. β = a β .
a
Câu 59. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −21.
B. P = −10.
C. P = 10.
D. P = 21.
Câu 60. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).
B. (1; +∞).
C. (−∞; −1).
Câu 61. Dãy số nào sau đây có giới hạn khác 0?
1
n+1
A. .
B.
.
n
n
1
C. √ .
n
D. (−∞; 1).
D.
sin n
.
n
Câu 62. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 3.
B. 0.
C. −3.
D. −6.
Câu 63. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là
√
3
3
√
a 5
a 6
a3 15
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Câu 64. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Hai hình chóp tứ giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Hai hình chóp tam giác.
Trang 5/10 Mã đề 1
Câu 65. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 6
a3 6
a3 3
a 6
.
B.
.
C.
.
D.
.
A.
24
48
8
24
Câu 66. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. − .
B. .
C. −2.
D. 2.
2
2
2
Câu 67. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
2
1
1
1
B. 3 .
C. √ .
A. 2 .
D. 3 .
e
e
2e
2 e
mx − 4
Câu 68. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 34.
B. 67.
C. 45.
D. 26.
Câu 69. Cho
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 10.
C. |z| = 17.
D. |z| = 17.
Câu 70. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 9 cạnh.
C. 10 cạnh.
D. 11 cạnh.
Câu 71. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp
√ là√
D. 8, 16, 32.
A. 6, 12, 24.
B. 2, 4, 8.
C. 2 3, 4 3, 38.
Câu 72. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. 1.
C. e2016 .
D. 22016 .
Câu 73. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 5 đỉnh, 9 cạnh, 6 mặt.
Câu 74. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng (S AB). Thiết diện của
√ hình chóp S .ABCD với
√tích là
√mặt phẳng (AIC) có diện
2
2
2
2
11a
a 5
a 7
a 2
.
B.
.
C.
.
D.
.
A.
32
16
8
4
Câu 75. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (0; 2).
Câu 76. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; 8).
B. A(−4; 8).
C. A(4; −8).
D. A(−4; −8)(.
Câu 77. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng BD và S C bằng
√
√
√
√
a 6
a 6
a 6
A. a 6.
B.
.
C.
.
D.
.
3
6
2
Câu 78. [1] Hàm số nào đồng√biến trên khoảng (0; +∞)?
A. y = loga x trong đó a = 3 − 2.
B. y = log √2 x.
C. y = log 14 x.
D. y = log π4 x.
Câu 79. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 6.
B. V = 5.
C. V = 4.
D. V = 3.
Trang 6/10 Mã đề 1
Câu 80. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
S .ABCD là
của AD, biết S H ⊥ (ABCD), S A = a 5. Thể tích khối chóp √
√
2a3
4a3
2a3 3
4a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 81. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Hai khối chóp tam giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
Câu 82. [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 2.
B. 1.
C. 5.
D. 3.
x=t
Câu 83. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
A. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
D. (x + 3) + (y + 1) + (z − 3) = .
C. (x + 3) + (y + 1) + (z + 3) = .
4
4
Z 2
ln(x + 1)
Câu 84. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 1.
B. 3.
C. −3.
D. 0.
x+3
nghịch biến trên khoảng
Câu 85. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. 1.
B. 3.
C. Vô số.
D. 2.
Câu 86. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Trục thực.
D. Đường phân giác góc phần tư thứ nhất.
Câu 87. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = ln x − 1.
C. y0 = 1 + ln x.
D. y0 = 1 − ln x.
Câu 88. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
36
24
12
6
Câu 89. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (2; 1; 6).
C. ~u = (1; 0; 2).
D. ~u = (2; 2; −1).
Câu 90. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 11.
B. 12.
C. 4.
D. 10.
Trang 7/10 Mã đề 1
Câu 91. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = [2; 1].
B. D = R.
C. D = (−2; 1).
2
D. D = R \ {1; 2}.
Câu 92. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Có một.
C. Có hai.
D. Khơng có.
x−1 y z+1
= =
và
Câu 93. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. −x + 6y + 4z + 5 = 0.
C. 10x − 7y + 13z + 3 = 0.
D. 2x − y + 2z − 1 = 0.
log(mx)
= 2 có nghiệm thực duy nhất
Câu 94. [3-1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0.
B. m < 0 ∨ m > 4.
C. m < 0 ∨ m = 4.
D. m ≤ 0.
3
x −1
Câu 95. Tính lim
x→1 x − 1
A. 0.
B. −∞.
C. +∞.
D. 3.
Câu 96. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
0
C. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Câu 97. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. Vô nghiệm.
C. 1.
D. 2.
2
Câu 98. Tính
√ (1 + 2i)z = 3 + 4i. √
√4 mơ đun của số phức z biết
B. |z| = 2 5.
C. |z| = 5.
A. |z| = 5.
D. |z| = 5.
Câu 99. [12211d] Số nghiệm của phương trình 12.3 + 3.15 − 5 = 20 là
A. 2.
B. 3.
C. Vô nghiệm.
D. 1.
log(mx)
= 2 có nghiệm thực duy nhất
Câu 100. [1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0.
B. m < 0 ∨ m > 4.
C. m ≤ 0.
D. m < 0 ∨ m = 4.
2
2
2
1 + 2 + ··· + n
Câu 101. [3-1133d] Tính lim
n3
2
1
A. +∞.
B. .
C. .
D. 0.
3
3
Câu 102. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; 3; 3).
C. A0 (−3; 3; 1).
D. A0 (−3; −3; 3).
x
Câu 103. Tứ diện đều thuộc loại
A. {3; 4}.
B. {3; 3}.
x
x
C. {5; 3}.
D. {4; 3}.
!
3n + 2
2
Câu 104. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 3.
C. 5.
D. 2.
Trang 8/10 Mã đề 1
Câu 105. Hàm số f có nguyên hàm trên K nếu
A. f (x) xác định trên K.
C. f (x) có giá trị lớn nhất trên K.
B. f (x) có giá trị nhỏ nhất trên K.
D. f (x) liên tục trên K.
Câu 106. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 27cm3 .
C. 46cm3 .
D. 72cm3 .
Câu 107. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường
√
√
√
√ thẳng BD bằng
abc b2 + c2
b a2 + c2
c a2 + b2
a b2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 108. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√
√
√ là
3
3
3
3
8a 3
a 3
8a 3
4a 3
A.
.
B.
.
C.
.
D.
.
3
9
9
9
1
Câu 109. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e + 1.
B. xy = e − 1.
C. xy0 = −ey + 1.
D. xy0 = −ey − 1.
Câu 110. Trong các mệnh đề dưới đây, mệnh đề !nào sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
√
x2 + 3x + 5
Câu 111. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. 0.
B. 1.
C. − .
D. .
4
4
Câu 112. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là −1, phần ảo là −4.
Câu 113. [1] Tập
! xác định của hàm số! y = log3 (2x + 1) là
!
1
1
1
A. −∞; − .
B. −∞; .
C.
; +∞ .
2
2
2
Câu 114. Hàm số y =
A. x = 1.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 2.
C. x = 3.
!
1
D. − ; +∞ .
2
D. x = 0.
x2 +2x
Câu 115. [2] Tổng các nghiệm của phương trình 2
= 82−x là
A. −6.
B. 5.
C. 6.
Câu 116. Khối đa diện đều loại {3; 4} có số đỉnh
A. 6.
B. 10.
√
Câu 117. [1] Biết log6 a = 2 thì log6 a bằng
A. 108.
B. 6.
D. −5.
C. 8.
D. 4.
C. 4.
D. 36.
Câu 118. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Hai cạnh.
C. Ba cạnh.
D. Năm cạnh.
Trang 9/10 Mã đề 1
Câu 119. [12210d] Xét các số thực dương x, y thỏa mãn log3
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
x + 2y
nhất Pmin của P√ = x + y.
√
√
√
2 11 − 3
9 11 + 19
18 11 − 29
9 11 − 19
A. Pmin =
.
B. Pmin =
. C. Pmin =
. D. Pmin =
.
3
9
21
9
Câu 120. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √
√
a3 3
a3 3
a3 3
a3
.
B.
.
C.
.
D.
.
A.
4
8
4
12
Câu 121.
Z 0 Trong các khẳng định sau, khẳng định nào sai?
u (x)
A.
dx = log |u(x)| + C.
u(x)
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Câu 122. Khối lập phương thuộc loại
A. {4; 3}.
B. {3; 3}.
C. {3; 4}.
D. {5; 3}.
Z 3
a
a
x
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
Câu 123. Cho I =
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 16.
B. P = 4.
C. P = −2.
D. P = 28.
2
Câu 124. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 5.
B. 8.
C. 7.
D. 6.
Câu 125. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0)
lần lượt là hình
! chiếu của B, C lên các !cạnh AC, AB. Tọa độ hình chiếu của A lên BC là !
5
8
7
A.
; 0; 0 .
; 0; 0 .
; 0; 0 .
B.
C. (2; 0; 0).
D.
3
3
3
Câu 126.
√cạnh bằng a
√
√
√ Thể tích của tứ diện đều
3
3
a 2
a3 2
a3 2
a 2
.
B.
.
C.
.
D.
.
A.
2
12
4
6
Câu 127. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≤ 3.
C. m ≥ 3.
D. m < 3.
Câu 128. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x) + g(x)] = a + b.
B. lim [ f (x) − g(x)] = a − b.
x→+∞
x→+∞
f (x) a
C. lim
= .
D. lim [ f (x)g(x)] = ab.
x→+∞ g(x)
x→+∞
b
Câu 129. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng (1; 2).
Câu 130. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
Trang 10/10 Mã đề 1
100.1, 03
triệu.
3
(1, 01)3
C. m =
triệu.
(1, 01)3 − 1
A. m =
100.(1, 01)3
triệu.
3
120.(1, 12)3
D. m =
triệu.
(1, 12)3 − 1
B. m =
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 11/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
B
3. A
5.
B
7.
2.
B
4.
B
6. A
8. A
C
9. A
10.
C
11. A
12.
C
13.
14. A
B
17.
19.
18. A
C
20.
B
21.
D
B
26. A
27.
B
28.
29.
B
30. A
31.
B
32.
33. A
C
D
34. A
B
37.
D
38.
39.
40. A
41.
42. A
43.
C
B
C
D
45. A
B
46.
47.
D
48.
B
49.
50.
B
51. A
52.
54.
C
24.
25.
44.
C
22. A
23. A
36.
D
16.
15. A
D
C
53. A
55.
C
56.
D
D
C
57. A
58. A
59. A
60. A
61.
B
63.
B
62.
C
64.
66.
D
65. A
67. A
C
68. A
69. A
1
70.
71. A
C
72. A
74.
C
76. A
73.
C
75.
C
77.
C
C
78.
B
79.
80.
B
81.
82. A
C
84.
86.
B
88.
90.
C
B
83.
B
85.
B
87.
C
89.
C
91.
92. A
97.
98. A
99.
100.
C
D
95.
C
96. A
D
C
D
101.
103.
B
C
B
105.
104. A
106.
B
93.
94.
102.
D
B
108.
D
107. A
C
109.
110. A
B
111.
C
113.
D
114. A
115.
D
116. A
117.
112.
C
118.
120.
119. A
C
B
121. A
122. A
124.
126.
C
C
B
123.
B
125.
B
127.
128.
C
130.
C
129. A
2
C