Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thpt (453)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (154.23 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [2] Phương trình log x 4 log2
A. Vơ nghiệm.

B. 2.

!
5 − 12x
= 2 có bao nhiêu nghiệm thực?
12x − 8
C. 3.
D. 1.

Câu 2. Giá √
trị cực đại của hàm số y √
= x3 − 3x2 − 3x + 2


A. −3 + 4 2.
B. 3 − 4 2.
C. −3 − 4 2.
D. 3 + 4 2.
1


. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 3. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = e − 1.
C. xy0 = ey + 1.
D. xy0 = −ey + 1.
Câu 4. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.
Câu 5. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 22.

C. Khối bát diện đều.

D. Khối 12 mặt đều.

ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
C. S = 24.


D. S = 135.

Câu 6. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a 3
a
a
B.
.
C. a.
D. .
A. .
2
2
3
cos n + sin n
Câu 7. Tính lim
n2 + 1
A. 0.
B. −∞.
C. +∞.
D. 1.
Z 3
x
a
a
Câu 8. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá trị


d
d
0 4+2 x+1
P = a + b + c + d bằng?
A. P = 28.
B. P = 4.
C. P = 16.
D. P = −2.



x=t




Câu 9. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
4

4
9
9
2
2
2
2
2
2
C. (x − 3) + (y − 1) + (z − 3) = .
D. (x + 3) + (y + 1) + (z − 3) = .
4
4
8
Câu 10. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 64.
B. 96.
C. 82.
D. 81.
Câu 11. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. (4; +∞).
C. (−∞; 6, 5).
0

0

0


0

D. [6, 5; +∞).

0

Câu 12. Mặt phẳng (AB C ) chia khối lăng trụ ABC.A B C thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Hai khối chóp tam giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Hai khối chóp tứ giác.
Trang 1/10 Mã đề 1



Câu 13. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. Vơ số.
C. 63.
D. 64.
Câu 14. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.

B. Câu (I) sai.


C. Câu (II) sai.

D. Khơng có câu nào
sai.
Câu 15. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) trên khoảng (a; b).
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. Cả ba câu trên đều sai.
Z 1
6
2
3
. Tính
f (x)dx.
Câu 16. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
0
3x + 1
A. 4.

B. −1.

C. 2.

D. 6.

Câu 17. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đơi.

B. Tăng gấp 4 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp 8 lần.
log 2x

Câu 18. [3-1229d] Đạo hàm của hàm số y =
x2
1 − 2 ln 2x
1 − 4 ln 2x
1 − 2 log 2x
1
.
C. y0 = 3
.
D. y0 =
.
A. y0 =
.
B. y0 = 3
3
x
2x ln 10
x ln 10
2x3 ln 10
Câu 19. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 1.
C. 3.
D. Vô nghiệm.
Câu 20. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức

P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 18.
B.
.
C. 12.
D. 27.
2
Câu 21. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là

3
3

a 15
a 6
a3 5
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
2
Câu 22. Cho z1 , z2 là hai nghiệm của phương trình z + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )

A. P = −21.
B. P = 21.
C. P = −10.
D. P = 10.
Câu 23. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > −1.
B. m > 0.
C. m ≥ 0.

D. m > 1.

Câu 24. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
A. 2a 2.
B.
.
C.
.
D. a 2.
2
4
Trang 2/10 Mã đề 1



1 3
x − 2x2 + 3x − 1.
3
B. (−∞; 1) và (3; +∞). C. (1; 3).
D. (1; +∞).

Câu 25. Tìm tất cả các khoảng đồng biến của hàm số y =
A. (−∞; 3).

Câu 26. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Bốn mặt.
C. Một mặt.

D. Hai mặt.

Câu 27. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 28. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.

C. Khối bát diện đều.

D. Khối lập phương.


Câu 29. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
B. y = log √2 x.
A. y = log π4 x.

C. y = loga x trong đó a = 3 − 2.
D. y = log 14 x.
Câu 30.! Dãy số nào sau đây có giới
!n hạn là 0?
n
1
5
A.
.
B.
.
3
3

!n
5
C. − .
3

!n
4
D.
.
e

log2 240 log2 15


+ log2 1 bằng
log3,75 2 log60 2
B. 4.
C. 1.

Câu 31. [1-c] Giá trị biểu thức
A. 3.

D. −8.

Câu 32. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (2; 2; −1).
C. ~u = (2; 1; 6).
D. ~u = (1; 0; 2).
Câu 33. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (1; 3; 2).

C. (2; 4; 6).
D. (2; 4; 3).
Câu 34. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {5; 3}.

D. {3; 3}.

Câu 35. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 36. [3-12214d] Với giá trị nào của m thì phương trình
A. 0 < m ≤ 1.

B. 2 < m ≤ 3.

1
3|x−2|

= m − 2 có nghiệm

C. 0 ≤ m ≤ 1.

D. 2 ≤ m ≤ 3.

Câu 37. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.

B. Số cạnh của khối chóp bằng 2n.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số mặt của khối chóp bằng 2n+1.
Câu 38. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (−∞; −1) và (0; +∞). C. (0; 1).
D. (−1; 0).
Trang 3/10 Mã đề 1



Câu 39. Xác định phần ảo của số √
phức z = ( 2 + 3i)2 √
A. −7.
B. −6 2.
C. 6 2.
Câu 40. Hàm số nào sau đây khơng có cực trị
1
B. y = x3 − 3x.
A. y = x + .
x

D. 7.

x−2
.
D. y = x4 − 2x + 1.
2x + 1




x = 1 + 3t




Câu 41. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=
−1
+

2t
x
=
−1
+
2t
x
=
1
+
3t
x = 1 + 7t
















A. 
D. 

.
y = −10 + 11t . B. 
y = −10 + 11t . C. 
y = 1 + 4t .
y=1+t
















z = 6 − 5t
z = −6 − 5t
z = 1 − 5t
z = 1 + 5t
C. y =

Câu 42. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng

(S AB). Thiết diện của
phẳng (AIC) có diện√tích là

√ hình chóp S .ABCD với mặt
2
2
2
a 7
11a
a2 2
a 5
.
B.
.
C.
.
D.
.
A.
16
8
32
4
2mx + 1
1
Câu 43. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −5.

B. 0.
C. 1.
D. −2.
Câu 44. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là 3, phần ảo là 4.
1
Câu 45. Hàm số y = x + có giá trị cực đại là
x
A. −2.
B. 1.
C. 2.
D. −1.
Câu 46. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
ab
1
A. √
.
B. 2
.
C. √
.
D. √
.
2

a +b
a2 + b2
a2 + b2
2 a2 + b2
x+3
nghịch biến trên khoảng
Câu 47. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. 2.
B. Vô số.
C. 1.
D. 3.
Câu 48. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng BD và S C bằng




a 6
a 6
a 6
A. a 6.
B.
.
C.
.
D.
.
3

2
6
x2 − 5x + 6
Câu 49. Tính giới hạn lim
x→2
x−2
A. 1.
B. 5.
C. −1.
D. 0.
Câu 50. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 1 nghiệm.
B. Vơ nghiệm.
C. 2 nghiệm.
log7 16
Câu 51. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. 2.
B. −4.
C. 4.

D. 3 nghiệm.

D. −2.
Trang 4/10 Mã đề 1


Câu 52. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1

1 + 2e
1 + 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
4 − 2e
4 − 2e
4e + 2
√3
4
Câu 53. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
7
5
A. a 8 .
B. a 3 .
C. a 3 .
Câu 54. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 12.

C. 8.

D. m =

1 − 2e

.
4e + 2

2

D. a 3 .
D. 20.

Câu 55. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. 3n3 lần.
C. n3 lần.
D. n lần.
Câu 56. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
Câu 57. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 70, 128 triệu đồng. C. 3, 5 triệu đồng.
D. 50, 7 triệu đồng.
Câu 58. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
A. aα bα = (ab)α .

B. aα+β = aα .aβ .

!4x
!2−x

2
3
Câu 59. Tập các số x thỏa mãn


!
" 3 ! 2
"
2
2
B.
; +∞ .
A. − ; +∞ .
3
5

α

= aβ .
β
a

C. aαβ = (aα )β .

D.

#
2
C. −∞; .
3


#
2
D. −∞; .
5

x+2
đồng biến trên khoảng
Câu 60. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. Vơ số.
B. 1.
C. 2.
D. 3.
1
Câu 61. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 4.
C. 3.
D. 2.

Câu 62. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là √

a3 3
a3 3

a3
A.
.
B.
.
C.
.
D. a3 3.
3
12
4
Câu 63. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = −5.
C. x = 0.
D. x = −2.
Câu 64. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 3 mặt.
C. 6 mặt.

D. 5 mặt.

Câu 65. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 10.

D. 6.

C. 8.


Câu 66. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
Trang 5/10 Mã đề 1


(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.

B. 2.

Câu 67. [2] Phương trình log4 (x + 1)2 + 2 = log √2
A. Vô nghiệm.
B. 2 nghiệm.

C. 1.
D. 4.

4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
C. 3 nghiệm.
D. 1 nghiệm.

Câu 68. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 4 mặt.

D. 9 mặt.


Câu 69. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều đúng.
Câu 70. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
n2 − 2
.
B.
u
=
.
A. un =
n
5n − 3n2
(n + 1)2

C. Cả hai đều sai.
C. un =

n2 − 3n
.
n2

D. Chỉ có (II) đúng.
D. un =


1 − 2n
.
5n + n2

Câu 71. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
B. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Câu 72. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 23.

C. 21.
D. 24.
Câu 73. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
đến đường√thẳng BD0 bằng



a b2 + c2
c a2 + b2
b a2 + c2
abc b2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
x+1
Câu 74. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. .

B. 1.
C. 3.
D. .
3
4
2
x
Câu 75. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 1.
B. M = , m = 0.
C. M = e, m = .
D. M = e, m = 0.
e
e
Câu 76. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
với
đáy

S
C
=
a
3. √
Thể tích khối chóp S .ABC√là



3
3
a 3
a 3
a3 6
2a3 6
A.
.
B.
.
C.
.
D.
.
4
2
12
9
Trang 6/10 Mã đề 1


Câu 77. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
D. m > − .
A. m ≥ 0.
B. m ≤ 0.
C. − < m < 0.

4
4
Câu 78. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
100.1, 03
120.(1, 12)3
triệu.
B.
m
=
triệu.
A. m =
(1, 12)3 − 1
3
100.(1, 01)3
(1, 01)3
C. m =
triệu.
D. m =
triệu.
3
(1, 01)3 − 1
Câu 79. Biểu thức nào sau đây không
√ 0 có nghĩa
−1
A. (−1) .
B. (− 2) .



−1.

−3

C.

D. 0−1 .

Câu 80. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. 5.
B. .
C. 5.
D. 25.
5
Câu 81. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun √
z.



5 13
.
B. 2 13.
A.
C. 26.
D. 2.

13
Câu 82. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. (−∞; −3].
C. [1; +∞).
D. [−1; 3].


Câu 83. [1] Đạo hàm của hàm số y = 2 x là
1
1
.
B. y0 = 2 x . ln x.
C. y0 = 2 x . ln 2.
D. y0 =
.
A. y0 = x
2 . ln x
ln 2
Câu 84. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 15
a3 5
a3 15
a3
.
B.
.

C.
.
D.
.
A.
5
25
25
3
12 + 22 + · · · + n2
Câu 85. [3-1133d] Tính lim
n3
2
1
A. +∞.
B. .
C. 0.
D. .
3
3
Câu 86. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. −3 ≤ m ≤ 3.
C. m ≤ 3.
D. m ≥ 3.
Câu 87. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1728
1637
1079

23
A.
.
B.
.
C.
.
D.
.
4913
4913
4913
68
Câu 88. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 89. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 8 mặt.

D. 7 mặt.
Trang 7/10 Mã đề 1


Câu 90. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 1.

C. 7.
D. 3.
log 2x

Câu 91. [1229d] Đạo hàm của hàm số y =
x2
1
1 − 2 ln 2x
1 − 4 ln 2x
1 − 2 log 2x
A. y0 = 3
.
B. y0 = 3
.
C. y0 =
.
D. y0 =
.
3
2x ln 10
x ln 10
2x ln 10
x3
Câu 92. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
B.
.
C. 5.
D. 7.

A. .
2
2
Câu 93. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim [ f (x)g(x)] = ab.
B. lim
= .
x→+∞
x→+∞ g(x)
b
C. lim [ f (x) − g(x)] = a − b.
D. lim [ f (x) + g(x)] = a + b.
x→+∞

Câu 94. Tính giới hạn lim
A. 0.

x→+∞

2n + 1
3n + 2
3
B. .
2

C.


1
.
2

D.

2
.
3

Câu 95. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.

B. 1.

C. 2.

D. 0.

Câu 96. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
9
1
2
B.
.

C.
.
D. .
A. .
5
10
10
5
Câu 97. Phát biểu nào sau đây là sai?
1
A. lim un = c (un = c là hằng số).
B. lim = 0.
n
1
n
C. lim q = 0 (|q| > 1).
D. lim k = 0.
n
Câu 98. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là


A. 6, 12, 24.
B. 8, 16, 32.
C. 2, 4, 8.
D. 2 3, 4 3, 38.

Câu 99. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1

A. .
B. − .
C. 3.
D. −3.
3
3
2n − 3
Câu 100. Tính lim 2
bằng
2n + 3n + 1
A. 1.
B. 0.
C. +∞.
D. −∞.
d = 60◦ . Đường chéo
Câu 101. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





a3 6
4a3 6
2a3 6
3

A. a 6.
B.
.
C.
.
D.
.
3
3
3
Trang 8/10 Mã đề 1


Câu 102. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.

B. 3.

C. 1.

1
3|x−1|

= 3m − 2 có nghiệm duy

D. 2.

x3 −3x+3


Câu 103. [2-c] Giá trị lớn nhất của hàm số f (x) = e
trên đoạn [0; 2] là
5
3
2
A. e .
B. e .
C. e .
D. e.
t
9
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao
Câu 104. [4] Xét hàm số f (t) = t
9 + m2
cho f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 1.
B. Vô số.
C. 0.
D. 2.
Câu 105. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n3 lần.
C. n3 lần.
D. 2n2 lần.
Câu 106. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vô số.
B. 1.
C. 2.

D. 3.
2

Câu 107. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
A. √ .
B.
.
C. 2 .
3
2e
e
2 e

D.

2
.
e3

Câu 108. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.016.000.
C. 102.423.000.
D. 102.424.000.

Câu 109. [1231h] Trong khơng gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x−2 y+2 z−3
x y−2 z−3
=
.
B.
=
=
.
A. =
2
3
−1
2
2
2

x y z−1
x−2 y−2 z−3
C.
=
=
.
D. = =
.
2
3
4
1 1
1
Câu 110. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. 3.
C. 1.
D. Vô nghiệm.
Câu 111. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB)
√ bằng



a 6
A.
.
B. a 3.
C. 2a 6.
D. a 6.

2
x−3
Câu 112. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. 1.
C. 0.
D. −∞.
2
4
3
Câu 113. Cho z là nghiệm của phương trình
√ x + x + 1 = 0. Tính P = z + 2z − z

−1 + i 3
−1 − i 3
A. P = 2.
B. P =
.
C. P = 2i.
D. P =
.
2
2

Câu 114. [1] Biết log6 a = 2 thì log6 a bằng
A. 4.
B. 6.
C. 108.

D. 36.
1
Câu 115. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = ey − 1.
B. xy0 = ey + 1.
C. xy0 = −ey − 1.
D. xy0 = −ey + 1.

Trang 9/10 Mã đề 1


Câu 116. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
A. 2e + 1.

B. 2e.

2
.
e

C. 3.

D.

Câu 117. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.

B. 10.

C. 12.

D. 8.

Câu 118. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.

C. Khối 20 mặt đều.

D. Khối 12 mặt đều.

Câu 119. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B. a3 .
C.
.
D.
.
A.
12
6
24

Câu 120. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. (−∞; +∞).
C. [−1; 2).
D. [1; 2].
Câu 121. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 8 năm.
C. 9 năm.
D. 10 năm.
Z 1
Câu 122. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
1
B. 1.
C. .
D. 0.
A. .
4
2
Câu 123. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √



a3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
12
4
4
8
Câu 124. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là


a3 3
2a3 3
a3 3
3
A.
D.
.
B.
.

C. a 3.
.
3
6
3
0 0 0 0
Câu 125.
a. Khoảng cách từ C đến √
AC 0 bằng
√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh √
a 3
a 6
a 6
a 6
A.
.
B.
.
C.
.
D.
.
7
2
2
3
Câu 126. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. lim f (x) = f (a).

x→a
x→a
x→a
C. lim+ f (x) = lim− f (x) = +∞.
D. f (x) có giới hạn hữu hạn khi x → a.
x→a

x→a

Câu 127. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e2 − 2; m = e−2 + 2.
C. M = e−2 + 1; m = 1.
D. M = e−2 − 2; m = 1.
2
x
Câu 128. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m
2
√ + 1)2 trên [0; 1] bằng √
A. m = ±1.
B. m = ±3.
C. m = ± 3.
D. m = ± 2.

Câu 129. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Bát diện đều.
C. Tứ diện đều.
D. Nhị thập diện đều.
x
Câu 130. Tính diện tích hình phẳng giới hạn bởi các đường

√ y = xe , y = 0, x = 1.
1
3
3
A. .
B. .
C.
.
D. 1.
2
2
2

Trang 10/10 Mã đề 1


- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
D

1.
3.

2. A


B

4.

5. A

6.

7. A

8.

9.

12.

13. A

14.
D
B

20. A

21.

B

22. A


23. A

29.

B

B

26.

B

36.
C

45. A
47.

D

C
B

44.

B

50.


C
D
C

52.

B
D

53.

D

54. A
56. A

C

57. A

58.

59. A

60.

61. A

62. A


63. A

64. A

67.

D

48.

C

65.

B

42.
46.

55.

C

40.

B

49.

D


38.

B

41. A

51.

24.

34.

C

35. A

43.

C

32.

D

39.

D

30. A


B

31.

37.

C

28. A

C

33.

D

18.

19.

27.

B

16. A

B

17.


25.

C

10.

B

11. A
15.

B

D

D
C

66. A
69.

B
1

D


70.


D

73.

72. A
D

74.
76.

C

71.

C

75.

D

77.

D
D

78.

D

79.


80.

D

81. A

82. A

B

C

83.
C

85.

B

87.

B

89.

B

90. A


91.

B

92. A

93.

B

84.
86.

B
D

88.

D

94.
C

96.
98. A
100.

95.

C


97.

C

99. A
B

102.

101. A
C

104.

103. A
D

C

106.
108.

D

105.

C

107.


C

109.

D
D

110.

C

111.

112.

C

113. A

114. A

115. A

116.

D

118.
120.


117.

C

119. A

B

122.

121.
C

124. A
126.

B

128. A
130.

C

123.

D

125.


D

127.

D

129. A
D

2

C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×