Tải bản đầy đủ (.pdf) (41 trang)

Nghiên cứu công nghệ sản xuất hợp kim hàn nhôm

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (527.42 KB, 41 trang )

cộng hòa x hội chủ nghĩa việt nam
Bộ công thơng
Viện khoa học và công nghệ Mỏ - Luyện kim
Báo cáo tổng kết đề tài
Nghiên cứu công nghệ sản xuất
hợp kim HN NHễM










6855
15/5/2008


thành phố H NI 2007




cộng hòa x hội chủ nghĩa việt nam
Bộ công thơng
Viện khoa học và công nghệ Mỏ - Luyện kim
báo cáo tổng kết đề tài
Nghiên cứu công nghệ sản xuất
hợp kim hàn


NHễM





Chủ nhiệm đề tài: Kỹ s Phm Bỏ Kiờm

Ngày tháng 12 năm 2007
Thủ trởng cơ quan chủ quản
Ngày tháng 12 năm 2007
Thủ trởng cơ quan chủ trì









BCKT: Nghiên cứu sản xuất hợp kim hàn nhôm

Viện Khoa học và Công nghệ Mỏ-Luyện kim
1
Nh÷ng ng−êi thùc hiÖn
TT
Họ và tên Chức vụ Cơ quan
1
Phạm Bá Kiêm Kỹ sư hoá Viện KH&CH Mỏ-Luyện kim

2
Lê Hồng Sơn Kỹ sư hoá Viện KH&CH Mỏ-Luyện kim
3
Nguyễn Minh Đạt Kỹ sư LK Viện KH&CH Mỏ-Luyện kim
4
Ngô Quyền Kỹ sư điện Viện KH&CH Mỏ-Luyện kim
BCKT: Nghiên cứu sản xuất hợp kim hàn nhôm

Viện Khoa học và Công nghệ Mỏ-Luyện kim
2
MỤC LỤC
Số hiệu Danh mục Tr
Mở đầu.
6
Chương 1 Tổng quan.
7
1.1
Tình hình nghiên cứu và sản xuất trong và ngoài nước, mục tiêu của đề tài.
7
1.1.1
Tình hình nghiên cứu ở ngoài nước.
7
1.1.2
Tình hình nghiên cứu trong nước.
8
1.1.3
Mục tiêu của đề tài.
8
1.2
Tổng quan cơ sở lý thuyết.

11
1.2.1
Các vấn đề về hàn nhôm và hợp kim nhôm.
11
1.2.1.1
Đặc điểm hàn nhôm và hợp kim nhôm.
11
1.2.1.2
Chất trợ dung.
12
1.2.1.3
Tiết diện dây hàn.
13
1.2.2
Cấu trúc, tính chất hợp kim hàn nhôm.
14
1.2.2.1
Các hợp kim hàn nhôm.
14
1.2.2.2
Giản đồ trạng thái hệ Al-Si.
15
1.2.2.3
Giản đồ trạng thái hệ Al-Cu.
17
1.2.2.4
Giản đồ trạng thái hệ Al-Zn.
18
1.2.2.5
Giản đồ trạng thái hệ Al-Si-Cu.

20
1.2.2.6
Giản đồ trạng thái hệ Al-Mn.
20
Chương 2 Phương pháp nghiên cứu và công tác chuẩn bị.
21
2.1
Phương pháp nghiên cứu.
21
2.2
Thiết bị và vật tư nghiên cứu.
21
2.2.1
Thiết bị nghiên cứu.
21
2.2.2
Nguyên liệu và hoá chất.
21
2.2.3
Sơ đồ công nghệ.
22
2.2.4
Công tác phân tích.
22
Chương 3
Nội dung nghiên cứu. 23
3.1
Nghiên cứu nấu luyện một số loại hợp kim trung gian.
23
3.2

Nghiên cứu ảnh hưởng của nhiệt độ nấu luyện đến thành phần hợp kim.
24
3.2.1.
Hợp kim hàn nhôm hệ Al-Si.
24
3.2.1.1
Hợp kim Al-Si (5% Si).
24
3.2.1.2
Hợp kim Al-Si (12% Si).
25
BCKT: Nghiên cứu sản xuất hợp kim hàn nhôm

Viện Khoa học và Công nghệ Mỏ-Luyện kim
3
3.2.2
Hợp kim hàn nhôm hệ Al-Cu-Si.
26
3.2.2.1
Hợp kim Π35A. 26
3.2.2.2
Hợp kim Π52A.
27
3.2.3
Hợp kim hàn nhôm hệ Al-Zn.
28
3.2.3.1
Hợp kim Al-20Zn. 28
3.2.3.2
Hợp kim Zn-5Al.

29
3.2.3.3
Hợp kim ΠцAM65A.
29
3.3
Nghiên cứu ảnh hưởng của thời gian nấu luyện đến hiệu suất thu hồi hợp kim
hàn nhôm.
30
3.3.1
Nghiên cứu ảnh hưởng thời gian nấu luyện đến hiệu suất thu hồi hợp kim hàn
nhôm hệ Al-Si.
30
3.3.2
Nghiên cứu ảnh hưởng thời gian nấu luyện đến hiệu suất thu hồi hợp kim hàn
nhôm hệ Al-Cu-Si.
31
3.3.3
Nghiên cứu ảnh hưởng thời gian nấu luyện đến hiệu suất thu hồi hợp kim hàn
nhôm hệ Zn-Cu-Mn-Al.
33
3.3.4
Nghiên cứu ảnh hưởng thời gian nấu luyện đến hiệu suất thu hồi các nguyên
tố hợp kim hàn nhôm hệ Al-20Zn.
34
3.4
Nghiên cứu thí nghiệm mẻ lớn, sản xuất thử sản phẩm.
35
3.5
Khảo sát khả năng kéo dây, tạo phôi hàn.
36

3.6
Định hướng áp dụng sản phẩm nghiên cứu.
36
3.7
Tính toán sơ bộ một số chỉ tiêu tiêu hao cho các mác hợp kim hàn nhôm
nghiên cứu.
36

Kết luận 38

Tài liệu tham khảo
39

Phụ lục
40











BCKT: Nghiên cứu sản xuất hợp kim hàn nhôm

Viện Khoa học và Công nghệ Mỏ-Luyện kim
4

MỤC LỤC BẢNG VÀ HÌNH
Bảng 1
Thành phần và tính chất cơ lý của một số hợp kin hàn nhôm
7
Bảng 2
Hợp kim hàn nhôm (Thành phần, tính chất và lĩnh vực ứng dụng theo DIN 8513-4)
9
Bảng 3
Hợp kim hàn nhôm (Thành phần, tính chất và lĩnh vực ứng dụng theo DIN 1707 – D)
10
Bảng 4
Sợi để hàn hợp kim nhôm.
12
Bảng 5 Thành phần trợ dung để hàn cơ học nhôm và hợp kim nhôm (%). 12
Bảng 6
Chiều dày các vật hàn và tiế
t diện điện cực hàn để hàn hồ quang.
14
Bảng 7
Tiết diện sợi hàn khi hàn thủ công.
14
Bảng 8
Độ tan của silic trong nhôm.
15
Bảng 9
Độ hoà tan của đồng trong nhôm.
17
Bảng 10
Độ tan của kẽm trong nhôm.
18

Bảng 11
Ảnh hưởng của nhiệt độ đến hiệu suất thu hồi Si – HK Al-5Si.
24
Bảng 12
Ảnh hưởng của nhiệt độ đến hiệu suất thu hồi Si – HK Al-12Si.
25
Bảng 13
Ảnh hưởng của nhiệt độ nấu luyện đến hiệu suất thu hồi kim loại – HK П35A.
26
Bảng 14
Ảnh hưởng của nhiệt độ đến hiệu suất thu hồi kim loại – HK П52A.
27
Bảng 15
Ảnh hưởng của nhiệt độ nấu luyện đến hiệu suất thu hồi các kim loại – HK ПцAM65A.
29
Bảng 16
Ảnh hưởng của thời gian đến hiệ
u suất thu hồi kim loại – KH Al-12Si.
31
Bảng 17
Ảnh hưởng của thời gian đến hiệu suất thu hồi kim loại – HK П35A.
32
Bảng 18 Ảnh hưởng của thời gian đến hiệu suất thu hồi kim loại – KH ПцAM65A. 33
Bảng 19
Ảnh hưởng của thời gian đến hiệu suất thu hồi kim loại – HK Al-20Zn.
34
Bảng 20
Chỉ tiêu tiêu hao một số vật tư cơ bản cho 1Kg sản phẩm các loạ
i.
37

Hình 1
Các dạng mối hàn hợp kim nhôm
13
Hình 2
Góc nhôm giản đồ trạng thái hệ Al-Si-Cu
15
Hình 3
Giản đồ trạng thái hệ Al-Si [7]
16
Hình 4
Giản đồ trạng thái hệ Al-Cu [7]
17
Hình 5
Giản đồ trạng thái hệ Al-Zn
19
Hình 6
Giản đồ trạng thái hệ Al-Mn
20
Hình 7
Sơ đồ công nghệ dự kiến
22
Hình 8
Ảnh hưởng của nhiệt độ đến hiệu suất thu hồi h
ợp kim (Hệ Al-5Si)
24
BCKT: Nghiên cứu sản xuất hợp kim hàn nhôm

Viện Khoa học và Công nghệ Mỏ-Luyện kim
5
Hình 9

Ảnh hưởng của nhiệt độ đến hiệu suất thu hồi hợp kim (Hệ Al-12Si)
25
Hình 10
Ảnh hưởng của nhiệt độ đến hiệu suất thu hồi hợp kim (Hệ Π35A)
27
Hình 11 Ảnh hưởng của nhiệt độ đến hiệu suất thu hồi 28
Hình 12
Ảnh hưởng của nhiệt độ đến hiệu suất thu hồi hợp kim (Hệ ΠцAM65A)
30
Hình 13
Ảnh hưở
ng của thời gian đến hiệu suất thu hồi hợp kim (Hệ Al-Si)
31
Hình 14
Ảnh hưởng của thời gian đến hiệu suất thu hồi hợp kim (Hệ Al-Cu-Si)
32
Hình 15
Ảnh hưởng của thời gian đến hiệu suất thu hồi hợp kim (Hệ Zn-Cu-Mn-Al)
33
Hình 16
Ảnh hưởng của thời gian đến hiệu suất thu hồi hợp kim (Hệ Al-20Zn)
34
Hình 17
Sơ đồ công nghệ nấu luyện hợp kim hàn nhôm
37
BCKT: Nghiên cứu sản xuất hợp kim hàn nhôm

Viện Khoa học và Công nghệ Mỏ-Luyện kim
6
MỞ ĐẦU

Các vật đúc nhôm thường có khuyết tật được xử lý bằng công nghệ hàn, hàn
nối các cấu kiện bằng hợp kim nhôm như lò sưởi điện, thiết bị sấy bằng điện, các
thiết bị năng lượng mặt trời, các đế máy…
Trong thực tế công nghệ hàn nhôm và hợp kim hàn nhôm được sử dụng khá
phổ biến.
Nhôm có ái lực lớn với oxy tạo thành oxyt nhôm (Al
2
O
3
). Oxyt này ở trong
mối hàn gây rỗ xỉ và nằm trên mặt vật hàn ngăn cản quá trình hàn. Nhiệt độ nóng
chảy của nó 2050
o
C trong khi đó nhiệt độ nóng chảy của nhôm chỉ khoảng 650
o
C.
Khối lượng riêng của oxyt nhôm lớn hơn nhôm và hợp kim nhôm nên khó nổi
trong bể hàn. Mặt khác ở nhiệt độ cao nhôm dễ hoà tan hydro H
2
nên tạo rỗ khí.
Trong thực tế có nhiều loại hợp kim để hàn nhôm, tuỳ theo kích thước, thành
phần và tính chất của vật hàn mà chọn các hợp kim hàn thích hợp. Hợp kim hàn
nhôm có nhiều loại, dựa vào nhiệt độ nóng chảy có thể chia làm hai nhóm.
• Nhóm hợp kim dễ nóng chảy: Thường gọi hợp kim hàn mềm, nhiệt độ nóng
chảy của chúng dưới 450
o
C.
• Nhóm hợp kim khó nóng chảy: Thường gọi hợp kim hàn cứng, nhiệt độ
nóng chảy của chúng trên 450
o

C.
Ở nước ngoài người ta đã sản xuất hàng chục loại hợp kim để hàn nhôm. Ở
nước ta nhu cầu hợp kim hàn nhôm rất lớn nhưng chưa có cơ quan nào nghiên cứu
và sản xuất hợp kim hàn nhôm. Đề tài “Nghiên cứu công nghệ sản xuất hợp kim
hàn nhôm” được Bộ Công Thương cho phép triển khai nghiên cứu theo quyết định
số 873/QĐ-BCN ký ngày 19/03/2007 của Bộ Công nghiệp. Sản phẩm của đề tài sẽ
được
ứng dụng thực tế ở Viện Nghiên cứu vũ khí-Bộ Quốc phòng, Công ty cơ khí
Đông Anh-Bộ Xây dựng, Công ty đóng tàu Bạch Đằng-Tập đoàn VINASHIN,
xưởng nhôm gia dụng Tân Đức Thành-TP.Cần Thơ.

BCKT: Nghiên cứu sản xuất hợp kim hàn nhôm

Viện Khoa học và Công nghệ Mỏ-Luyện kim
7
CHƯƠNG 1: TỔNG QUAN
1.1. TÌNH HÌNH NGHIÊN CỨU VÀ SẢN XUẤT TRONG VÀ NGOÀI NƯỚC,
MỤC TIÊU CỦA ĐỀ TÀI.
1.1.1. Tình hình nghiên cứu ở nước ngoài.
Ở nước ngoài người ta đã sản xuất công nghiệp nhiều loại hợp kim hàn
nhôm [2; 3; 4; 5; 6].
Liên Xô cũ đã sản xuất các mác hợp kim hàn nhôm như bảng 1:
Bảng 1: Thành phần và tính chất cơ lý của một số hợp kin hàn nhôm [6]
Thành phần hoá học
T
o
C nóng chảy
Mác HK
Cu Si Zn Mn Al
Bắt

đầu
Kết
thúc
δ
B

Kg/mm
2

Lĩnh vực
sử dụng
Silumin
_ 11,7 _ _
Còn
lại
577 577 17 ÷ 19
Để hàn các chi
tiết, khắc phục
khuyết tật, hàn
lò sưởi điện từ
HK AlMц
34A
28 6 _ _
Còn
lại
525 525 18 ÷ 24 -nt-
35A
21 7 _ _
Còn
lại

535 535 13 ÷ 14 -nt-
Π52A
10 ± 1
1 ±
0,1
_ _
Còn
lại
590 _ _
Để hàn các
giao điểm
nhôm và HK
nhôm giữ anôt
hoá
Π575A
_ _
20 ±
1
_
Còn
lại
575 _ _
Để hàn nhôm
và HK nhôm
Π550A
27 ± 1 6 ± 1 _
1,5 ±
0,2
Còn
lại

550 _ _

B62
20 3,5
20 ±
24
_
Còn
lại
490 500 13 ÷ 15
Để hàn HK
nhôm ở nhiệt
độ 480
o
C và
cao hơn
ΠЦAM65
14,5 ±
0,5
_
65 ±
1
0,6 ±
0,1
Còn
lại
390 420 32 ÷ 35


Ở châu Âu cũng như ở Đức đã sản xuất các mác hợp kim hàn nhôm theo

ISO: EN 573-3, EN AW-4343, EN AW-4045, EN AW-4047A… tương đương
DIN 8513-4, DIN 1732….[2]
BCKT: Nghiên cứu sản xuất hợp kim hàn nhôm

Viện Khoa học và Công nghệ Mỏ-Luyện kim
8
Thành phần, tính chất và lĩnh vực ứng dụng của hợp kim hàn nhôm được
nêu trong bảng 2 và bảng 3 (Trang 9 và trang 10).
1.1.2. Tình hình nghiên cứu ở trong nước.
Các hợp kim hàn nhôm ở trong nước chưa được quan tâm nghiên cứu. Chưa
có tạp chí nào công bố kết quả nghiên cứu chế tạo hợp kim hàn nhôm và ứng dụng
trong thực tế của nó. Hầu hết các cơ sở sản xuất có nhu cầu hàn nhôm đều sử dụng
hợp kim hàn nhôm nhập từ n
ước ngoài mác Al-Si 5 hoặc Al-Si 11,5 hoặc Zn-Al 5,
ПЦAM 65…
Hiện nay nhu cầu hợp kim hàn nhôm rất lớn. Các cơ sở sản xuất đúc sử dụng
hàn các khuyết tật, hàn nối các cấu kiện bằng hợp kim nhôm. Hàn nhôm còn sử
dụng trong công nghiệp đóng tàu biển, công nghiệp ôtô…[1].
1.1.3. Mục tiêu của đề tài:
Nghiên cứu công nghệ sản xuất một số mác hợp kim hàn nhôm theo tiêu chuẩn
của Liên Xô cũ:
+ Hợp kim mác Silumin: Si 10 ÷ 13%, còn lại là Al.
+ Hợp kim mác Π575A: Zn 20 ± 1%, còn l
ại là Al.
+ Hợp kim mác ΠЦAM65: Cu 14,5 ± 0,5%, Zn 65 ± 1%, Mn 0,6 ± 0,1%,
còn lại là nhôm.

Chọn 2 mác 1 và 2 sản xuất thử, kéo dây ф3mm, ф4mm.
BCKT: Nghiên cứu sản xuất hợp kim hàn nhôm


Viện Khoa học và Công nghệ Mỏ-Luyện kim
9

Bảng 2: Hợp kim hàn nhôm (thành phần tính chất và lĩnh vực ứng dụng theo DIN 8513-4)

Thành phần, % khối lượng (giá trị cực đại trong
phạm vi cho phép
Các nguyên tố
khác
Nhiệt độ NC
(T
o
C)
Tên gọi, thành
phần HK theo
ISO
Gần tương
đương ENS
573-3
Si Fe Cu Mn Mg Zn Ti Mỗi 1 Tổng Bắt đầu Kết thúc
Nhiệt độ
làm việc
Lĩnh vưc ứng
dụng
L-AlSi 7,5
B Al 92,5 Si 575-615
3.2280

6,8-8,2 0,5 0,03 0,1 0,1 0,07 0,03
0,03 0,15 575 615 605-615

ENAW-4343
ENAW-AlSi 7,5
6,8-7,2 0,8 0,25 0,1 - 0,2 -
0,05 0,15 - - -
L-AlSi 10
B Al90 Si 575-595

9,0 -10,5 0,5 0,03 0,1 0,1 0,07 0,03
0,03 0,15 575 595 595 -605 Hàn tấm lá
mỏng
ENAW-4045
ENAW-AlSi 10
9,0 – 11,0 0,5 0,03 0,1 0,1 0,1 0,2
0,05 0,15 - - -
L Al Si 12
B Al 88 Si 575-590

11,0 – 13,5 0,5 0,03 0,1 0,1 0,07 0,03
0,03 0,15 575 590 590 -600 Mối hàn
mối, hàn
lồng vào

ENAW-4047A
ENAW-AlSi12A
11,0 -13,0 0,6 0,3 0,15 0,1 0,2 0,15
0,05 0,15 - - -

(Phần còn lại trong thành phần các nguyên tố là nhôm Al)
BCKT: Nghiên cứu sản xuất hợp kim hàn nhôm


Viện Khoa học và Công nghệ Mỏ-Luyện kim
10
Bảng 3: Hợp kim hàn nhôm (Thành phần, tính chất và
lĩnh vực ứng dụng theo DIN 1707, nhóm D)

Thành phần % nguyên tố hợp kim hoá Nhiệt độ nóng chảy Tên gọi thành
phần HK theo ISO
HK số
Sn Zn Khác
Cho phép
tạp chất
Bắt đầu kết thúc
Lĩnh vực ứng dụng
L. SnZn 10
23820 85,0 8,0 -
Tổng 10
(1)
200 250 Hàn ma sát, hàn
sóng siêu âm
B Sn90Zn 200-250
92 15
L SnZn 40
B Sn60Zn 200-340
23830 55,0-70,0 30,0-45,0 200 340 Hàn ma sát tốt hơn
cho Al cuộn lá
mỏng, hàn tự đông
(F-LW1)
L CdZn 20
B Cd80Zn 265-280
22481 17,0-25,0 Cd: 75,0-

83,0
265 280 Hàn với trợ dung
(F-LW2)
L ZnAl 5
22320 94,0-96,0 Al: 4,0-6,0 380 390 Hàn siêu âm, hàn
hơi.

(1): Các kim loại dùng:
Sn: 99,9%.
Cd: 99,9%.
Al: 99,5%.
Zn:99,9%.
Tổng tạp chất đến 1% không ảnh hưởng đến mối hàn.
BCTK:Nghiên cứu công nghệ sản xuất hợp kim hàn nhôm.
Viện Khoa học và Công nghệ Mỏ - Luyện kim
11
1.2. TỔNG QUAN CƠ SỞ LÝ THUYẾT.
1.2.1. Các vấn đề về hàn nhôm và hợp kim nhôm:
1.2.1.1.
Đặc điểm hàn nhôm và hợp kim nhôm:
Hợp kim hàn nhôm được dùng để xử lý các vật đúc nhôm có khuyết tật
bằng công nghệ hàn và hàn nối các cấu kiện hợp kim nhôm như lò sưởi, thiết bị
sấy bằng điện, các thiết bị năng lượng mặt trời, các đế máy. Trong thực tế công
nghệ hàn nhôm và hợp kim nhôm hàn được sử dụng khá phổ biến.
Khi hàn nhôm cần chú ý:
• Nhôm có ái lực lớn với oxy, dễ
tạo thành oxyt nhôm (Al
2
O
3

) ở trong mối
hàn gây rỗ xỉ và nằm trên mặt vật hàn ngăn cản quá trình hàn. Nhiệt độ
nóng chảy của Al
2
O
3
cao (2050
o
C) trong khi đó nhiệt độ nóng chảy của
nhôm chỉ khoảng 650
o
C.
• Ở nhiệt độ cao nhôm và hợp kim nhôm có độ bền rất thấp, ở nhiệt độ gần
nhiệt độ nóng chảy thì chi tiết có thể tự bị phá hoại do khối lượng của bản
thân nó. Từ trạng thái đặc chuyển sang trạng thái lỏng nhôm thay đổi màu
sắc nên khó quan sát khi hàn, tỷ trọng của Al
2
O
3
lớn hơn tỷ trọng nhôm
và hợp kim nhôm nên khó nổi trong bể hàn. Mặt khác ở nhiệt độ cao
nhôm dễ hoà tan hyđro (H
2
) nên tạo rỗ khí.
• Các chi tiết trước khi hàn phải được làm sạch Al
2
O
3
ở một khoảng cách
của mép hàn ít nhất 30 ÷ 35mm bằng cơ học hoặc hoá học. Ngọn lửa hàn

bình thường, nếu thừa oxy dễ tạo thành Al
2
O
3
, thừa khí axetilen (C
2
H
2
) dễ
rỗ khí.
• Số hiệu mỏ hàn khí đối với nhôm và hợp kim nhôm chọn lớn hơn khi hàn
thép 1÷2 số. Que hàn nhôm có thành phần tương tự vật hàn. Có thể dùng
que hợp kim Al-Si thì mối hàn tốt hơn. Các loại hợp kim hàn được nêu ra
trong bảng 1& 2 và 3.
• Hợp kim nhôm đúc Al 1; Al 9; Al 25; Al 26 có tính hàn tốt, các hợp kim
Al 3; Al 4; Al 5; Al 7; Al 8; Al 10B có tính hàn trung bình.
• Các hợp kim AK4, AK4-1 có tính hàn hạn chế, hợp kim B95 có tính hàn kém.
• Trong tài liệu [4] nêu thành phần một số sợi hàn nhôm theo ГOCT 7871-75.
BCTK:Nghiên cứu công nghệ sản xuất hợp kim hàn nhôm.
Viện Khoa học và Công nghệ Mỏ - Luyện kim
12
Bảng 4: Sợi để hàn hợp kim nhôm.
Kim loại hàn
Sợi hàn (ΓOCT 7871-75)
AДOO, AДO, AД1 C
B
85T, C
B
A97
Aмц C

B
AlMц
AД31, AД33, AB C
B
AK5, CB1557
Al 2, Al 4, Al 6 C
B
AK5

1.2.1.2.
Chất trợ dung:
Thành phần chất trợ dung: Khi hàn nhôm và hợp kim nhôm cần thiết dùng
trợ dung. Thành phần một số trợ dung được nêu ra trong bảng 5.
Bảng 5: Thành phần trợ dung để hàn cơ học nhôm và hợp kim nhôm (%).
Mác trợ dung để hàn
Theo lớp trợ dung Dưới trợ dung Điện xỉ
Các cấu tử
AH-A1 AH-A4 48Aф-1 MATИ-1A МАТИ 10 ЖА 64 ЖА 64А AH-301
AH-302
Ah-304
Clorua natri
20 - - - - 17 15
-
Clorua kali
50 57 47 47 30 43 38
20-60
Clorua liti
- - - 8 - - -
10-40
Clorua bari

- 28 47 - 68 - -
5-30
Florua natri
- - - 42 - - -
-
Florua kali
- - 2 - - - -
-
Florua liti
- 7,5 - - - - -
2-20
Florua canxi
- - - - - - 3
-
Florua nhôm
- 7,5 - - - - -
-
Criolit
30 - - 3 2 36 43
-
Floro bicronat kali
- - 2 - - - -
-
Cát thạch anh
- - - - - 4 Đến 1
-
Oxyt crom
- - 2 - - - -
-


BCTK:Nghiên cứu công nghệ sản xuất hợp kim hàn nhôm.
Viện Khoa học và Công nghệ Mỏ - Luyện kim
13
Trợ dung AH-A1 dùng cả ở dạng nóng chảy cũng như không nóng chảy
để hàn nhôm kỹ thuật. Đối với chất trợ dung hàn không nóng chảy được sấy khô
ở nhiệt độ 350
o
C ÷ 400
o
C. Trợ dung AH-A4, 48-AФ-1, MATИ-10 để hàn hợp
kim Al-Mg. Trợ dung MATИ-1A dùng để hàn hợp kim Al-Mn. Trợ dung ЖA-
64 , ЖA-64A là trợ dung gốm để hàn tự động hợp kim nhôm dày 30mm và lớn
hơn. Trợ dung ЖA-64 khi hàn nhôm AДOO làm bẩn nhôm bởi silic. Trợ dung
ЖA-64A thực tế không có silic.
1.2.1.3. Tiết diện dây hàn:
Tiết diện dây hàn: Tuỳ theo chiều dày kim loại hàn, kết cấu mối hàn mà
người ta chọn các dây hàn có kích thước khác nhau. Các kết cấu hàn mô tả như
trên hình 1.
a. V
ật liệu gốc
b. Mối hàn nối mặt đầu trong điểm giằng tác dụng ứng suất dọc.
c. Mối hàn giáp nối, hàn lấp đầy với tấm vật liệu.
d. Hàn trên tấm gia cường ngang.
e. Mối hàn giáp nối để thô không xử lý.
g. Hàn trên tấm gia cường dọc.
h. Dạng chữ thập, với các mối hàn có gờ hàn ngang.
i. Hàn trên tấm sườn dọc.
k. Dạng chữ thập, các mối hàn giáp mối k



1a 1b 1c 1d 1e


1g 1h 1i 1k

Hình 1: Các dạng mối hàn hợp kim nhôm

BCTK:Nghiên cứu công nghệ sản xuất hợp kim hàn nhôm.
Viện Khoa học và Công nghệ Mỏ - Luyện kim
14
Bảng 6: Chiều dày các vật hàn và tiết diện
điện cực hàn để hàn hồ quang.
Chiều dày kim loại hàn (mm) Tiết diện điện cực hàn (mm)
< 3 2 ÷ 3
3 ÷ 4 4 ÷ 5
4 ÷ 7 4 ÷ 5
7 ÷ 10 6 ÷ 8
10 ÷ 15 8 ÷ 12

Bảng 7: Tiết diện sợi hàn khi hàn thủ công.
Chiều dày kim loại hàn (mm) Tiết diện sợi hàn (mm)
1,0 1,0
2,0 2,0
4,0 2,0 ÷ 3,0
5,0 3,0 ÷ 4,0
10 4,0 ÷ 5,0

Hàn tự động và bán tự động: Tiết diện dây hàn dùng nhỏ hơn, thông
thường từ 1,5 ÷ 3,5mm tuỳ theo chiều dày kim loại hàn từ 4 ÷ 5mm đến hàng
chục mm.

1.2.2. Cấu trúc, tính chất hợp kim hàn nhôm:
1.2.2.1. Các hợp kim hàn nhôm:
Trong thực tế hàn nhôm và hợp kim nhôm người ta sử dụng các mác
silumin có hàm lượng silic từ 5 ÷ 12%, các hợp kim kẽm chứa nhôm từ 5 ÷ 20%
và các hợp kim nhôm chứa đồng, silic như các mác 34A, 35A. Mác 34A (6% Si,
27% Cu còn lại là Al), mác 35A (7% Si, 21% Cu còn lại là Al). Hợp kim 34A,
35A có thành phần phổ biến ở góc giản đồ
trạng thái hệ bậc 3 : Al-Cu-Si [3; 6].
Hợp kim 34A có thành phần nằm gần điểm etecti bậc 3 : α + CuAl
2
+ Si.
Hợp kim 35A có cấu trúc etecti bậc 3 và có sự tham gia của etecti bậc 2: α + Si
và các tinh thể nhôm nguyên sinh.
BCTK:Nghiên cứu công nghệ sản xuất hợp kim hàn nhôm.
Viện Khoa học và Công nghệ Mỏ - Luyện kim
15








Hình 2: Góc nhôm giản đồ trạng thái hệ Al-Si-Cu
Tính chất cơ học và nhiệt độ nóng chảy của hợp kim hàn được dẫn ra
trong bảng 1, 2 và 3. Tính chất cơ học thấp của hợp kim hàn được giải thích
bằng cấu tạo độ hạt lớn, vai trò của silic và pha dòn CuAl
2
làm tăng tính dòn

của hợp kim. Cấu trúc của hợp kim hàn và tính chất của chúng có thể được cải
thiện bằng cách chế hoá hợp kim hàn với hỗn hợp muối nóng chảy 25% NaF,
62,5% NaCl và 12,5% KCl hoặc thêm một lượng nhỏ stronxi (Sr), có nghĩa là
biến tính hợp kim. Kết quả tốt nhất với hợp kim 34A, 35A là biến tính bằng hỗn
hợp muối ở lượng bằng 5% trọng lượng hợp kim và thêm 0,05 ÷ 0,1% Sr. Nhiệt
độ biến tính 800
o
C. Kết quả biến tính các hợp kim có thành phần etecti có độ hạt
nhỏ mịn tương tự etecti hợp kim kiểu silumin. Sự thay đổi cấu trúc như đã nêu
dẫn đến nâng cao tính chất cơ học. Ví dụ như hợp kim kiểu 34A biến tính độ bền
tăng lên 1,5 lần (từ 12Kg/mm
2
lên 19Kg/mm
2
), đối với hợp kim 35A độ bền
tăng 2 lần (Từ 14Kg/mm
2

lên 26Kg/mm
2
).
1.2.2.2. Giản đồ trạng thái hệ Al-Si:
Giản đồ trạng thái hệ Al-Si thuộc kiểu etecti. Nó tạo thành giữa nhôm và
silic ở nhiệt độ 577
o
C và nồng độ silic 11,7%. Độ tan cực đại của silic ở T
o

etecti là 1,65%.
Bảng 8: Độ tan của silic trong nhôm.

T
o
C 577 550 500 450 400 350 300 200
Độ tan (%) 1,65 1,30 0,80 0,48 0,29 0,17 0,10 0,05

BCTK:Nghiên cứu công nghệ sản xuất hợp kim hàn nhôm.
Viện Khoa học và Công nghệ Mỏ - Luyện kim
16
Theo Eliot T
o
etecti = 577,2
o
C, nồng độ Si = 12,7%. Tính chất của hợp
kim Al-Si: Khi thêm silic độ dẫn nhiệt của hợp kim Al-Si giảm. Tuy nhiên giảm
không nhiều khi thêm mangan hoặc magiê. Điện trở tăng khi tăng lượng Si đến
12%. Hệ số dãn dài liên tục giảm khi tăng hàm lượng silic.
Silic được ứng dụng rộng rãi làm nguyên tố hợp kim hoá trong hợp kim
nhôm bậc 2 kiểu silumin (Thành phần etecti) và phức tạp hơn. Tính chất cơ học
của hợp kim này được cải thi
ện khi biến tính bằng natri và các muối của nó.
Hợp kim Al-Si có độ chảy loãng cao, đồng nhất tốt và bền ăn mòn cao.
Silic là nguyên tố hợp kim hoá trong các hợp kim nhôm có thành phần phức tạp
trên cơ sở nhôm, nó có ái lực hoá học lớn với magiê cũng như với sắt và mangan
và có thể tạo thành hợp chất Mg
2
Si, AlMnSi và AlMnFeSi. Hợp chất Mg
2
Si hoà
tan trong dung dịch rắn
α của nhôm, còn các hợp chất khác không hoà tan. Vì

vậy hợp kim Al-Si với lượng thêm magiê được tăng bền bằng nhiệt luyện: tôi và
hoá già do tách pha Mg
2
Si. Giới hạn bền ở trạng thái nhiệt luyện tăng đến 27 ÷
30Kg/mm
2
.










Hình 3: Giản đồ trạng thái hệ Al-Si [7]
Silic làm tăng ít nhiệt độ tái kết tinh của nhôm. Hàm lượng silic ở 1% làm
tăng nhiệt độ tái kết tinh của nhôm lên 50
o
C. Theo Bochva và Svidexki ở hàm
lượng silic 0,05% quá trình tái kết tinh của nhôm tinh khiết xảy ra rất mạnh. Nó
cũng không làm giảm tính bền ăn mòn của nhôm tinh khiết và hợp kim nhôm.
BCTK:Nghiên cứu công nghệ sản xuất hợp kim hàn nhôm.
Viện Khoa học và Công nghệ Mỏ - Luyện kim
17
Hệ số dãn dài của nhôm khi tăng silic giảm mạnh. Môđun đàn hồi tăng mạnh
được giải thích bằng tương tác của hạt silic với nền nhôm. Khi giảm kích thước
hạt thì độ bền, môđun đàn hồi tăng lên, đồng thời hệ số dãn dài giảm. Đưa

niken, sắt giảm hệ số dãn dài. Hợp kim chứa 25 ÷ 30% Si có hệ số dãn dài thấp:
a.10
-6
= 14,5 ÷ 15,5. Hợp kim này ứng dụng tốt thay thép, trong các dụng cụ yêu
cầu hệ số dãn nở thấp và tỷ trọng nhỏ.
1.2.2.3. Giản đồ trạng thái hệ Al-Cu:
Giản đồ trạng thái hệ Al-Cu về phía nhôm thuộc kiểu etecti hoà tan hạn
chế cấu tử thứ 2. Etecti tạo thành ở nhiệt độ T
o
C = 548
o
C và nồng độ Cu = 33%.
Độ hoà tan đồng trong nhôm được nghiên cứu nhiều:











Hình 4: Giản đồ trạng thái hệ Al-Cu [7]
Bảng 9: Độ hoà tan của đồng trong nhôm.
T
o
C 548 515 500 450 400 300 200
Độ tan (%) 5,65 4,65 4,00 2,80 1,30 0,50 0,10


Etecti tạo thành trên cơ sở nhôm và CuAl
2
về phía nhôm, pha CuAl
2
được
kết tinh gián tiếp từ hỗn hợp nóng chảy, không tạo thành theo phản ứng
peritacti. CuAl
2
là pha có thành phần thay đổi của vùng đồng thể, ở nhiệt độ
548
o
C từ 52,5% ÷ 53,8% Cu và ở 400
o
C từ 53,25% ÷ 53,9%Cu. Ở nhiệt độ
BCTK:Nghiên cứu công nghệ sản xuất hợp kim hàn nhôm.
Viện Khoa học và Công nghệ Mỏ - Luyện kim
18
phòng CuAl
2
có mạng tứ diện a = 6,054, c = 4,864A
o
với 12 nguyên tử tế bào cơ
bản.
Tính chất của hợp kim nhôm: Tăng hàm lượng đồng từ 0% ÷ 12% làm
tăng độ nhớt của nhôm theo qui luật tăng hàm lượng đồng, môđun đàn hồi tăng.
Đồng là một trong những nguyên tố cơ bản hợp kim hoá hợp kim nhôm. Tăng
hàm lượng đồng từ 0 ÷ 6% làm tăng cao độ bền và giảm độ dãn dài tương đối
của hợp kim Al-Cu, tăng tiếp hàm lượ
ng đồng đến 14% làm giảm tính chất cơ

học. Giới hạn bền cực đại của hợp kim Al-Cu là 36 ÷ 37Kg/mm
2
. Khi thêm một
lượng không lớn magiê (0,02 ÷ 0,03%) hoàn toàn có khả năng hoá già tự nhiên
tương tự gây ra bởi mangan.
Tuy nhiên, đồng tăng cao độ bền nóng của nhôm nhưng hàm lượng tối ưu
của đồng theo lurnhicopka là 6 ÷ 6,5%. Tuy nhiên mức độ bền nóng của nó là
không cao (Giới hạn bền lâu ở 300
o
C trong 100h là 3Kg/mm
2
), hợp kim hoá nó
bằng mangan tăng độ bền lâu lên 2 lần. Thêm đồng làm giảm tính chất bền ăn
mòn của hợp kim nhôm. Độ bền ăn mòn của nhôm trong dung dịch 3% NaCl
cao hơn hợp chất CuAl
2
là 20 lần.
1.2.2.4. Giản đồ trạng thái hệ Al-Zn
Giản đồ trạng thái hệ Al-Zn nêu ra trên hình 5. Nhôm với kẽm không tạo
thành hợp chất, nó hoà tan tương hỗ, kẽm có độ tan lớn ở nhiệt độ etecti 382
o
C.
Bảng 10: Độ tan của kẽm trong nhôm Al
T
o
C 382 275 250 225 200 175 150 125 20
Độ tan (%) 84 31,6 22,3 16,1 12,6 9,5 7,0 5,4 2,0

Qua bảng 10 ta thấy độ tan của kẽm trong nhôm giảm với nhiệt độ.
Tính chất của hợp kim Al-Zn: Tăng hàm lượng kẽm làm tăng độ nhớt của

hợp kim nóng chảy. Kẽm là một trong những nguyên tố cơ bản của hợp kim hoá
hợp kim nhôm. Tăng lượng kẽm đến 13,2% làm tăng hệ số dãn dài từ 22,3.10
-6

lên 25,1.10
-6
trong khoảng nhiệt độ từ +20
o
C đến -50
o
C. Tăng hàm lượng kẽm
từ 0 ÷ 26% tăng giới hạn bền đến 38Kg/mm
2
, giới hạn chảy đến 32Kg/mm
2



BCTK:Nghiên cứu công nghệ sản xuất hợp kim hàn nhôm.
Viện Khoa học và Công nghệ Mỏ - Luyện kim
19
giảm độ dãn dài tương đối. Ở trạng thái nóng chảy hợp kim Al-Zn được tăng độ
bền khi nhiệt luyện. Tuy nhiên hệ số nhiệt luyện là không lớn.












Hình 5: Giản đồ trạng thái hệ Al-Zn
Khi nghiên cứu hợp kim Al-Zn A.A Bochva đã phát hiện hợp kim 80%Al,
20%Zn. Sau khi tôi và nung nóng ở nhiệt độ khoảng 100 ÷ 300
o
C, khi đó hợp
kim có độ cứng rất thấp, thấp hơn cả kim loại tinh khiết, độ dãn dài tương đối
tăng đến 200%. Các nghiên cứu đã cho thấy rằng trong vùng siêu dẻo có cấu
trúc hạt mịn đồng trục. A.A.Bochva thấy rằng sự chuyển các chất được thực
hiện nhờ cơ chế hoà tan-kết tủa có nghĩa là hoà tan chất vào một vị trí và tách ra
ở vị trí khác. Vì vậy hiện tượng siêu d
ẻo chỉ có thể có khi có sự hoà tan tương hỗ
các cấu tử. Hiện tượng siêu dẻo cũng được phát hiện trong hệ Al-Cu, Al-Si, Fe-
C. Zn đưa vào hợp kim Al như một trong những nguyên tố hợp kim hoá cơ bản,
khi có mặt đồng thời với magiê, kẽm tạo thành hợp kim MgZn
2
và hợp chất bậc
3: Al
2
Mg
3
Zn
3
và các hợp chất khác mà trong quá trình tôi và hoá già nhân tạo
cho phép tăng cao độ bền của hợp kim.
Đặc trưng của hợp kim nhôm kẽm Al-Zn có độ bền nóng rất thấp [7], hợp
kim 12% Zn có giới hạn bền lâu ở 300

o
C sau 100h bằng 0,75Kg/mm
2
, nâng cao
hàm lượng Zn độ bền ăn mòn của hợp kim giảm. Để nâng cao độ bền ăn mòn
hợp kim Al-Zn thêm Mg, Cu, …
BCTK:Nghiên cứu công nghệ sản xuất hợp kim hàn nhôm.
Viện Khoa học và Công nghệ Mỏ - Luyện kim
20
1.2.2.5. Giản đồ trạng thái hệ Al-Si-Cu:
Trong hệ Al-Si-Cu (Hình 2 trang 12) tồn tại pha bậc 2: Si-θ, ở đây pha θ
được tạo thành trên cơ sở hợp chất CuAl
2
trong hệ bậc 2 Al-Cu. Ở điểm etecti
tương ứng hàm lượng Si = 4,4%, nhiệt độ nóng chảy là 569
o
C. Ở hai phía khác,
góc bậc 3 của Al-θ và Al-Si giàu Al: Phía giàu Al bao gồm kết tinh nhôm
nguyên sinh Al
α
, Si và θ (CuAl
2
). Pha θ có vùng đồng thể trong hệ bậc 2 Al-Cu.
Pha θ có từ 54,1% Cu và 45,9%Al. Độ tan của Si trong pha θ là rất bé. Nó có
nhiệt độ nóng chảy là 590
o
C và tỷ trọng là 4,34 g/cm
3
.
1.2.2.6. Giản đồ trạng thái hệ Al-Mn.

Trong quá trình nghiên cứu đã cho thấy xu hướng hiện nay có một số loại
hợp kim hàn có chứa mangan. Ở Đức sử dụng hợp kim hàn nhôm hệ Al-Mn (Mn
1,5 ÷ 2,0%), hoặc hợp kim hàn hệ Al-Cu-Zn có chứa mangan.












Hình 6: Giản đồ trạng thái hệ Al-Mn.
BCTK:Nghiên cứu công nghệ sản xuất hợp kim hàn nhôm.
Viện Khoa học và Công nghệ Mỏ - Luyện kim
21
CHƯƠNG 2: PHƯƠNG PHÁP NGHIÊN CỨU VÀ CÔNG TÁC CHUẨN BỊ
2.1. PHƯƠNG PHÁP NGHIÊN CỨU.
Thông tin từ các tài liệu tham khảo được[1; 2; 3; 4; 5; 6; 7], qua nghiên
cứu tổng quan lý thuyết về thành phần hợp kim hàn nhôm, kỹ thuật hàn, nhu cầu
thực tế về hợp kim hàn nhôm, kỹ thuật nấu luyện hợp kim, công nghệ chế tạo
dây hàn:
• Tiến hành phân tích thành phần hoá học đối tượng nghiên cứu, nghiên cứu
xác định chế độ nấu luyện hợp kim hàn nhôm m
ột số mác nhất định trong
phòng thí nghiệm phù hợp với nhu cầu thực tế, sau đó chế tạo dây hàn
ф3mm.

• Từ kết quả nghiên cứu trong phòng thí nghiệm ở qui mô mẻ nhỏ, tiến
hành thí nghiệm qui mô mẻ lớn và áp dụng vào thực tiễn, điều tra thị
trường.
2.2. THIẾT BỊ VÀ VẬT TƯ NGHIÊN CỨU.
2.2.1. Thiết bị nghiên cứu.
- Lò cảm ứng trung tần 1Kg/mẻ.
- Lò cả
m ứng trung tần 250Kg/mẻ.
- Lò điện trở có nhiệt độ 800 ÷ 900
o
C.
- Đồng hồ, can nhiệt đo nhiệt độ.
- Thiết bị cán kéo
2.2.2. Nguyên liệu và hoá chất.
- Nhôm kim loại > 99,0%.
- Kẽm kim loại > 99,0%.
- Silic kim loại > 99,0%.
- Đồng kim loại > 99,0%.
- Mangan kim loại >99,0%.
- Hợp kim Al-Sr với Sr 10%.
- Các muối trợ dung, chất tạo xỉ, chất khử khí.

BCTK:Nghiên cứu công nghệ sản xuất hợp kim hàn nhôm.
Viện Khoa học và Công nghệ Mỏ - Luyện kim
22
2.2.3. Sơ đồ công nghệ.
Từ nhôm, silic, kẽm, đồng…. nấu luyện hợp kim trung gian Al-Si, Al-Cu.
Tuỳ theo mác hợp kim phối liệu có thể lấy 2 hoăc 3 trong số các nguyên liệu sau
để nấu luyện thành sản phẩm:

















Hình 7: Sơ đồ công nghệ dự kiến

2.2.4. Công tác phân tích.
Phân tích thành phần hoá học các đối tượng nghiên cứu, các hợp kim
nhôm, các sản phẩm nghiên cứu: Al; Cu; Zn; Si…. với khoảng 100 chỉ tiêu tại
trung tâm phân tích của Viện KH&CN Mỏ-Luyện kim và cơ quan ngoài.
Al-Si Al-Cu
Nấu luyện
Hợp kim hàn nhôm
Kéo dây
Sản phẩm dây hàn
Al-Zn
Al
Al-Mn
BCTK:Nghiên cứu công nghệ sản xuất hợp kim hàn nhôm.

Viện Khoa học và Công nghệ Mỏ - Luyện kim
23
CHƯƠNG 3 : NỘI DUNG NGHIÊN CỨU
3.1. NGHIÊN CỨU NẤU LUYỆN MỘT SỐ LOẠI HỢP KIM TRUNG GIAN.
Để làm nguyên liệu phối liệu nấu luyện các mác hợp kim hàn nhôm mà đề
tài nghiên cứu, cần nấu luyện một số loại hợp kim trung gian như: Hợp kim
trung gian Al-Si (20%Si), hợp kim trung gian Al-Cu (40% và 50%Cu), hợp kim
trung gian Al-Mn (10% và 15%Mn) từ Al-A7 (99,7%Al) có T
o
nc
= 660
o
C, Cu-
M1 (99,97%Cu) có T
o
nc
= 1083
o
C, Mn kim loại điện phân (99,0%Mn) có T
o
nc
=
1250
o
C, Si kim loại của Đức (99,9%Si) có T
o
nc
= 1430
o
C.

Hợp kim trung gian Al-Si (20,0%Si) có T
o
nc
= 700
o
C:
• Nhiệt độ nấu luyện: 900
o
C.
• Thời gian nấu luyện: 30 phút.
• Hiệu suất thu hồi kim loại: 97%.
• Thành phần hợp kim trung gian: 79,5% Al.
19,5% Si.
Tổng tạp chất ≤ 1%.
Hợp kim trung gian Al-Cu (40,0 ÷ 50,0%Cu) có T
o
nc
= 547 ÷ 591
o
C:
• Nhiệt độ nấu luyện: 800
o
C.
• Thời gian nấu luyện: 30 phút.
• Hiệu suất thu hồi kim loại: 98%.
• Thành phần hợp kim trung gian: 60,5% Al.
39,0% Cu.
Tổng tạp chất ≤ 1%.
Hợp kim trung gian Al-Mn (10,0 ÷ 15,0%Mn) có T
o

nc
= 710
o
C:
• Nhiệt độ nấu luyện: 900
o
C.
• Thời gian nấu luyện: 45 phút.
• Hiệu suất thu hồi kim loại: 95%.
• Thành phần HKTG: 88,5 ÷ 89,5% Al. 83,5 ÷ 84,5% Al
9,5 ÷ 10,0% Mn. 15,0% Mn
Tổng tạp chất ≤ 1%.

×