TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. !Dãy số nào sau đây có giới
!n hạn là 0?
n
4
5
.
B.
.
A.
3
e
!n
1
C.
.
3
!n
5
D. − .
3
Câu 2.
Z Trong các khẳng định sau, khẳng định nào sai? Z
xα+1
A.
0dx = C, C là hằng số.
B.
xα dx =
+ C, C là hằng số.
α+1
Z
Z
1
C.
dx = ln |x| + C, C là hằng số.
D.
dx = x + C, C là hằng số.
x
Câu 3. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó là:
A. 46cm3 .
B. 64cm3 .
C. 27cm3 .
D. 72cm3 .
Câu 4. [1] Tập! xác định của hàm số y =! log3 (2x + 1) là
!
1
1
1
B. − ; +∞ .
C. −∞; .
A. −∞; − .
2
2
2
!
1
D.
; +∞ .
2
Câu 5. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x ) − √
2
A. −1.
B. 4.
3
C. 2.
Z
6
3x + 1
1
. Tính
f (x)dx.
0
D. 6.
Câu 6. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (1; +∞).
Câu 7. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
A. aα+β = aα .aβ .
B. aα bα = (ab)α .
Câu 8. Tứ diện đều thuộc loại
A. {3; 3}.
B. {3; 4}.
α
aα
= aβ .
β
a
C. aαβ = (aα )β .
D.
C. {4; 3}.
D. {5; 3}.
Câu 9. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
23
13
5
A.
.
B. −
.
C.
.
D. − .
25
100
100
16
Câu 10. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 3 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 27 lần.
Câu 11. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = 4 + .
B. T = e + 1.
C. T = e + 3.
D. T = e + .
e
e
0 0 0 0
Câu 12. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
ab
1
A. √
.
B. 2
.
C. √
.
D. √
.
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
2
2
sin x
Câu 13. [3-c] Giá trị nhỏ nhất √
và giá trị lớn nhất của hàm số f (x)
+ 2cos x lần
√ =2
√ lượt là
A. 2 và 3.
B. 2 và 3.
C. 2 và 2 2.
D. 2 2 và 3.
Trang 1/10 Mã đề 1
√
Câu 14. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a 38
a 38
3a 58
3a
.
B.
.
C.
.
D.
.
A.
29
29
29
29
Câu 15. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.
√
√
√
√
5 13
B.
.
C. 2 13.
D. 2.
A. 26.
13
Câu 16. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
9
15
18
6
Câu 17. Dãy! số nào có giới hạn bằng 0?
!n
n
n3 − 3n
−2
6
2
.
B. un = n − 4n.
C. un =
.
D. un =
.
A. un =
5
n+1
3
√
√
4n2 + 1 − n + 2
Câu 18. Tính lim
bằng
2n − 3
3
C. +∞.
D. 1.
A. 2.
B. .
2
x−2 x−1
x
x+1
Câu 19. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3).
C. (−3; +∞).
D. (−∞; −3].
Câu 20. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {2}.
C. {3}.
D. {5}.
12 + 22 + · · · + n2
Câu 21. [3-1133d] Tính lim
n3
1
A. 0.
B. .
3
C.
2
.
3
Câu 22. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; 6, 5].
C. (4; +∞).
D. +∞.
D. [6, 5; +∞).
Câu 23. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 120 cm2 .
C. 1200 cm2 .
D. 160 cm2 .
Câu 24. Khối lập phương thuộc loại
A. {5; 3}.
B. {3; 4}.
C. {3; 3}.
D. {4; 3}.
Câu 25. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x−2 y−2 z−3
x y z−1
A.
=
=
.
B. = =
.
2
3
4
1 1
1
x−2 y+2 z−3
x y−2 z−3
C.
=
=
.
D. =
=
.
2
2
2
2
3
−1
Trang 2/10 Mã đề 1
1
Câu 26. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = −3, m = 4.
C. m = 4.
D. m = −3.
[ = 60◦ , S O
Câu 27. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ BC) bằng
√
√ Khoảng cách từ O đến (S
√
a 57
2a 57
a 57
.
C.
.
D.
.
A. a 57.
B.
17
19
19
Câu 28. Trong khơng gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 3).
B. A0 (−3; −3; 3).
C. A0 (−3; −3; −3).
D. A0 (−3; 3; 1).
Câu 29. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.
C. Khối tứ diện đều.
Câu 30. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.
B. 1.
C. 2.
D. Khối 12 mặt đều.
1
3|x−1|
= 3m − 2 có nghiệm duy
D. 3.
Câu 31. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 6 đỉnh, 6 cạnh, 4 mặt.
Câu 32. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
√ góc với đáy, S C = a3 √3. Thể tích khối chóp S 3.ABCD là
3
a 3
a 3
a
A.
.
B.
.
C.
.
D. a3 .
3
9
3
Câu 33. Trong các khẳng định sau, khẳng định nào sai?
A. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
dx = log |u(x)| + C.
B.
u(x)
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Câu 34. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 20.
C. 8.
D. 30.
Câu 35. [4-c] Xét các số thực dương x, y thỏa mãn 2 + 2 = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A.
.
B. 12.
C. 18.
D. 27.
2
Câu 36. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d nằm trên P hoặc d ⊥ P.
C. d ⊥ P.
D. d song song với (P).
2n − 3
Câu 37. Tính lim 2
bằng
2n + 3n + 1
A. +∞.
B. 0.
C. 1.
D. −∞.
x
y
Câu 38. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. −1 + 2 sin 2x.
C. −1 + sin x cos x.
Câu 39. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
A. .
B. 25.
C. 5.
5
D. 1 + 2 sin 2x.
√
D. 5.
Trang 3/10 Mã đề 1
Câu 40. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 12.
C. 8.
D. 6.
Câu 41. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 2.
B. y(−2) = 22.
C. y(−2) = 6.
D. y(−2) = −18.
1 − 2n
Câu 42. [1] Tính lim
bằng?
3n + 1
2
1
A. − .
B. .
3
3
C.
2
.
3
Câu 43. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (−∞; 1).
C. (2; +∞).
D. 1.
D. R.
Câu 44. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
√
A. y = log √2 x.
B. y = loga x trong đó a = 3 − 2.
C. y = log π4 x.
D. y = log 14 x.
Câu 45. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 15 tháng.
B. 17 tháng.
C. 18 tháng.
D. 16 tháng.
Câu 46. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [1; 2].
B. [−1; 2).
C. (−∞; +∞).
D. (1; 2).
Câu 47. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
B. log2 a = loga 2.
C. log2 a = − loga 2.
D. log2 a =
.
A. log2 a =
log2 a
loga 2
Câu 48. Cho
√
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 10.
C. |z| = 17.
D. |z| = 17.
Câu 49. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. 16π.
C. V = 4π.
D. 8π.
2−n
Câu 50. Giá trị của giới hạn lim
bằng
n+1
A. −1.
B. 1.
C. 2.
D. 0.
2mx + 1
1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 51. Giá trị lớn nhất của hàm số y =
m−x
3
A. −2.
B. −5.
C. 1.
D. 0.
2x + 1
Câu 52. Tính giới hạn lim
x→+∞ x + 1
1
A. 2.
B. 1.
C. .
D. −1.
2
!
1
1
1
Câu 53. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 2.
B. .
C. 1.
D. 0.
2
1
Câu 54. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.
B. D = (−∞; 1).
C. D = (1; +∞).
D. D = R.
Trang 4/10 Mã đề 1
1
Câu 55. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. −2 < m < −1.
C. (−∞; −2) ∪ (−1; +∞). D. −2 ≤ m ≤ −1.
Câu 56. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 24.
C. 21.
D. 23.
2
Câu 57. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
2
1
1
B. 3 .
C. √ .
A. 2 .
e
e
2 e
D.
1
.
2e3
d = 30◦ , biết S BC là tam giác đều
Câu 58. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
16
13
9
26
x2 − 12x + 35
Câu 59. Tính lim
x→5
25 − 5x
2
2
A. .
B. −∞.
C. − .
D. +∞.
5
5
Câu 60. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > −1.
B. m > 0.
C. m ≥ 0.
D. m > 1.
Câu 61. [1] Đạo hàm của hàm số y = 2 x là
1
.
B. y0 = 2 x . ln 2.
A. y0 =
ln 2
log7 16
Câu 62. [1-c] Giá trị của biểu thức
log7 15 − log7
A. 2.
B. −4.
C. y0 = 2 x . ln x.
15
30
D. y0 =
1
.
2 x . ln x
bằng
C. 4.
D. −2.
Câu 63. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. Vơ nghiệm.
B. 2 nghiệm.
C. 3 nghiệm.
D. 1 nghiệm.
1
Câu 64. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (−∞; 1) và (3; +∞). C. (−∞; 3).
D. (1; +∞).
Câu 65. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (I) đúng.
B. Cả hai câu trên sai.
C. Chỉ có (II) đúng.
Câu 66. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. 1.
C. −1.
D. Cả hai câu trên đúng.
D. 2.
Câu 67. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
√
3
3
3
3
8a 3
8a 3
4a 3
a 3
A.
.
B.
.
C.
.
D.
.
3
9
9
9
Trang 5/10 Mã đề 1
Câu 68. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
Câu 69. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là √
√
√
a3 3
a3 3
2a3 3
3
A. a 3.
B.
.
C.
.
D.
.
3
6
3
Câu 70.
f (x), g(x) liên
đề nào sai? Z
Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
f (x)g(x)dx =
f (x)dx g(x)dx.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
Z
Z
Z
C.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
D.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Câu 71. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
B. Cả ba câu trên đều sai.
C. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
D. F(x) = G(x) trên khoảng (a; b).
Câu 72. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Có vơ số.
C. Khơng có.
D. Có một.
Câu 73. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đôi.
B. Tăng gấp 4 lần.
C. Tăng gấp 8 lần.
D. Tăng gấp 6 lần.
Câu 74. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|
√
√
√
12 17
.
B. 34.
C. 5.
D. 68.
A.
17
Câu 75. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
√ tích khối chóp S .ABC
√ với đáy và S C = a 3. 3Thể
√là
√
3
3
a 6
2a 6
a 3
a3 3
.
B.
.
C.
.
D.
.
A.
12
9
2
4
√3
4
Câu 76. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
2
7
5
A. a 8 .
B. a 3 .
C. a 3 .
D. a 3 .
Câu 77. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e.
B. .
C. 3.
e
D. 2e + 1.
Câu 78. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. −2 ≤ m ≤ 2.
C. −3 ≤ m ≤ 3.
D. m ≥ 3.
Câu 79. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A.
.
B. .
C. 5.
D. 7.
2
2
Câu 80. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 2.
C. 3.
D. 1.
Trang 6/10 Mã đề 1
Câu 81. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 12 năm.
C. 13 năm.
D. 11 năm.
[ = 60◦ , S A ⊥ (ABCD).
Câu 82. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√chóp S .ABCD là
√
3
3
3
√
a
2
a
2
a
3
B.
.
C.
.
D.
.
A. a3 3.
4
12
6
Câu 83. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 212 triệu.
B. 220 triệu.
C. 210 triệu.
D. 216 triệu.
Câu 84. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 2.
C. 4.
Câu 85. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.
B. 3.
C. 2.
D. 3.
1
3|x−1|
= 3m − 2 có nghiệm duy
D. 1.
Câu 86.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất
√ của |z|
B. 1.
C. 2.
D. 3.
A. 5.
√
√
Câu 87. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt √l
√
phần ảo là 1 − √
3.
B. Phần thực là √2 − 1, phần ảo là √
3.
A. Phần thực là 2, √
C. Phần thực là 1 − 2, phần ảo là − 3.
D. Phần thực là 2 − 1, phần ảo là − 3.
Câu 88. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = S h.
D. V = 3S h.
2
3
Câu 89. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).
B. (I) và (III).
C. Cả ba mệnh đề.
D. (II) và (III).
Câu 90. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 8.
C. 3.
D. 4.
x−3 x−2 x−1
x
Câu 91. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (2; +∞).
C. (−∞; 2).
D. (−∞; 2].
Trang 7/10 Mã đề 1
Câu 92. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 8 mặt.
C. 4 mặt.
D. 6 mặt.
Câu 93. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. lim+ f (x) = lim− f (x) = +∞.
x→a
x→a
C. f (x) có giới hạn hữu hạn khi x → a.
x→a
x→a
D. lim f (x) = f (a).
x→a
Câu 94. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. [1; +∞).
C. [−1; 3].
D. (−∞; −3].
Câu 95. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
1
ab
ab
A. 2
.
B. √
.
C. √
.
D. √
.
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
Câu 96. Tính lim
A. 0.
cos n + sin n
n2 + 1
B. 1.
C. −∞.
D. +∞.
log(mx)
= 2 có nghiệm thực duy nhất
Câu 97. [3-1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0.
C. m ≤ 0.
D. m < 0 ∨ m = 4.
Câu 98. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp √
S .ABCD là
√ S H ⊥ (ABCD), S A =
4a3 3
4a3
2a3 3
2a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
√
Câu 99. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
3
a 2
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
6
18
36
6
Câu 100. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?
!
1
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số nghịch biến trên khoảng ; 1 .
3
!
!
1
1
C. Hàm số đồng biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng −∞; .
3
3
Câu 101. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.
C. Khối tứ diện đều.
D. Khối 20 mặt đều.
Câu 102. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 20.
C. 12.
D. 30.
Câu 103. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −2.
C. m = −1.
D. m = −3.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 104. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = e + 1.
B. xy = −e − 1.
C. xy0 = ey − 1.
D. xy0 = −ey + 1.
√
Câu 105. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả
bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 62.
C. 63.
D. 64.
4x + 1
Câu 106. [1] Tính lim
bằng?
x→−∞ x + 1
A. −4.
B. 4.
C. 2.
D. −1.
Trang 8/10 Mã đề 1
Câu 107. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Tăng lên (n − 1) lần. B. Giảm đi n lần.
C. Không thay đổi.
D. Tăng lên n lần.
x+2
đồng biến trên khoảng
Câu 108. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. 2.
B. 1.
C. Vô số.
D. 3.
!x
1
Câu 109. [2] Tổng các nghiệm của phương trình 31−x = 2 +
là
9
A. − log3 2.
B. 1 − log2 3.
C. − log2 3.
D. log2 3.
Câu 110. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.
B. 12.
C. 20.
D. 8.
√
Câu 111. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √
√
√
a3 3
a3 3
a3
3
B.
.
C.
.
D.
.
A. a 3.
12
3
4
Câu 112. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 1587 m.
B. 27 m.
C. 387 m.
D. 25 m.
Câu 113. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m , 0.
C. m = 0.
D. m < 0.
Câu 114. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là
√
√
a3 3
a3 3
a3
a3 3
A.
.
B.
.
C.
.
D.
.
8
4
4
12
x+2
Câu 115. Tính lim
bằng?
x→2
x
A. 0.
B. 1.
C. 3.
D. 2.
√3
Câu 116. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. − .
B. −3.
C. 3.
D. .
3
3
1
Câu 117. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 < m ≤ 1.
C. 2 < m ≤ 3.
D. 0 ≤ m ≤ 1.
Câu 118. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n3 lần.
C. 2n2 lần.
D. n3 lần.
Câu 119. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. Không tồn tại.
C. 9.
D. 0.
Câu 120. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
5a
2a
a
A.
.
B.
.
C.
.
D. .
9
9
9
9
Câu 121. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n lần.
C. n2 lần.
D. n3 lần.
Trang 9/10 Mã đề 1
!2x−1
!2−x
3
3
Câu 122. Tập các số x thỏa mãn
≤
là
5
5
A. [1; +∞).
B. (+∞; −∞).
C. [3; +∞).
D. (−∞; 1].
Câu 123. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√ Thể tích khối chóp S 3.ABC
√
√
3
a 3
a 2
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
12
6
12
Câu 124. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. 2.
C. 3.
D. Vô số.
8
Câu 125. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 82.
C. 64.
D. 96.
Câu 126. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m < 3.
C. m > 3.
D. m ≥ 3.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 127. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 2.
B. 5.
C. 4.
D. 3.
Câu 128. Cho hình
√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là
√
3
3
√
a 5
a 6
a3 15
3
A.
.
B.
.
C. a 6.
D.
.
3
3
3
√
x2 + 3x + 5
Câu 129. Tính giới hạn lim
x→−∞
4x − 1
1
1
B. .
C. 1.
D. 0.
A. − .
4
4
Câu 130. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. 1.
C. 4 − 2 ln 2.
D. e.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
C
2.
B
3.
C
4.
B
5.
B
6. A
7.
9.
D
10.
B
11.
C
B
D
17.
D
D
D
19.
20.
D
21.
D
25.
B
28. A
30.
B
32.
B
23.
B
24.
26.
C
14.
18.
22.
D
12.
D
13.
15.
8. A
C
D
B
27.
C
29.
C
31.
B
33.
B
34.
B
35.
C
36.
B
37.
B
38.
B
39.
B
40.
B
41.
D
42. A
43. A
44. A
45.
D
47.
D
46.
C
48. A
50. A
51.
D
53.
52. A
54.
C
55.
D
C
56. A
57. A
58.
59. A
60. A
B
61.
B
62.
B
63.
B
64.
B
65.
D
66. A
67.
B
68. A
69.
B
70. A
1
71.
C
72. A
73.
C
74. A
75. A
76.
77.
B
78.
C
79.
B
80. A
81.
B
82.
83. A
C
B
84.
C
85.
D
86.
C
87.
D
88.
C
89. A
90.
C
91. A
92.
D
93.
D
94. A
95.
D
96. A
97.
D
98.
B
100.
B
99.
B
D
101.
102.
C
C
103.
B
104.
105.
B
106.
107.
B
108. A
109.
C
110. A
111.
C
112.
113.
116.
D
C
D
118. A
119.
D
120. A
121.
D
122. A
123.
D
124.
B
126.
125. A
127.
B
114. A
B
115.
117.
B
128.
C
130.
129. A
2
D
B
D