Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (425)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (155.14 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
n2 + 1
B. lim un = 0.
1
C. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = .
2
Câu 2. Cho hình chóp S .ABCD có
√ đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm của
AD, biết S H ⊥ (ABCD), S A = a 5. Thể tích khối chóp S .ABCD



3
3
3
2a
4a
4a 3
2a3 3
A.


.
B.
.
C.
.
D.
.
3
3
3
3
Câu 3. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây thứ
5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 1134 m.
C. 6510 m.
D. 2400 m.

Câu 1. [3-1132d] Cho dãy số (un ) với un =
A. lim un = 1.

Câu 4. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 − 2; m = 1.
C. M = e−2 + 2; m = 1.
D. M = e−2 + 1; m = 1.
log(mx)
= 2 có nghiệm thực duy nhất
Câu 5. [1226d] Tìm tham số thực m để phương trình
log(x + 1)

A. m < 0.
B. m < 0 ∨ m = 4.
C. m < 0 ∨ m > 4.
D. m ≤ 0.

Câu 6. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể tích
khối nón đã cho
√ là



πa3 6
πa3 3
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
6
3
2
Z 1
6
2

3
Câu 7. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x ) − √
. Tính
f (x)dx.
0
3x + 1
A. 6.

B. 4.

C. 2.

Câu 8. Hàm số y = −x + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (1; +∞).
C. (−∞; −1).

D. −1.

3

D. (−1; 1).

Câu 9. √[2] Cho hình lâp phương√ABCD.A0 B0C 0 D0 cạnh a. √
Khoảng cách từ C đến AC√0 bằng
a 6
a 3
a 6
a 6
A.

.
B.
.
C.
.
D.
.
7
2
2
3
Câu 10. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 17 tháng.
B. 16 tháng.
C. 18 tháng.
D. 15 tháng.
Câu 11. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
n

B. lim un = c (Với un = c là hằng số).

1
= 0 với k > 1.
nk
Câu 12. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

A. d nằm trên P.
B. d ⊥ P.
C. d nằm trên P hoặc d ⊥ P.
D. d song song với (P).
C. lim qn = 1 với |q| > 1.

D. lim

Trang 1/10 Mã đề 1



Câu 13. √
Thể tích của khối lập phương có cạnh bằng a 2


2a3 2
A.
.
B. 2a3 2.
C. V = a3 2.
3

D. V = 2a3 .

π
Câu 14. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.



C. T = 2.
D. T = 2 3.
A. T = 4.
B. T = 3 3 + 1.
Câu 15. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≤ .
C. m < .
D. m ≥ .
4
4
4
4
log2 240 log2 15
Câu 16. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 4.
B. 3.
C. −8.
D. 1.
Câu 17. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞

x→+∞
A. lim [ f (x) − g(x)] = a − b.
B. lim [ f (x)g(x)] = ab.
x→+∞
x→+∞
f (x) a
= .
C. lim [ f (x) + g(x)] = a + b.
D. lim
x→+∞
x→+∞ g(x)
b
Câu 18. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp
√ là√
A. 8, 16, 32.
B. 6, 12, 24.
C. 2 3, 4 3, 38.
D. 2, 4, 8.
x−3 x−2 x−1
x
Câu 19. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm

phân biệt là
A. (−∞; 2).
B. (2; +∞).
C. (−∞; 2].
D. [2; +∞).
Câu 20. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 160 cm2 .
C. 1200 cm2 .
D. 160 cm2 .
Câu 21. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. 2.
C. −4.

D. 4.

Câu 22. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
1
A. Hàm số nghịch biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng (1; +∞).
3!
!
1
1
D. Hàm số nghịch biến trên khoảng −∞; .
C. Hàm số đồng biến trên khoảng ; 1 .
3
3

Câu 23. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.

B. 2.

C. 1.

1
3|x−1|

= 3m − 2 có nghiệm duy

D. 4.

Câu 24.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
A.
Z
C.

( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
f (x)g(x)dx =
f (x)dx g(x)dx.

x−3

Câu 25. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. −∞.

k f (x)dx = f

B.
Z
D.

C. 1.

f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.

D. 0.
Trang 2/10 Mã đề 1


Câu 26. Tính lim

2n2 − 1
3n6 + n4

2

.
3
Câu 27. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√ Thể tích khối chóp S 3.ABC


3
a 3
a 2
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
12
12
6
Câu 28. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .
B. 2e2 .
C. −2e2 .
D. −e2 .

A. 1.

B. 0.

C. 2.

D.

Câu 29. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 3.
B. a 6.
C.
.
D. 2a 6.
2
Câu 30. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
B. f (x) xác định trên K.
C. f (x) có giá trị nhỏ nhất trên K.
D. f (x) có giá trị lớn nhất trên K.
Câu 31. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).

D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 32. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(4; 8).
C. A(−4; −8)(.
D. A(−4; 8).
log 2x

Câu 33. [1229d] Đạo hàm của hàm số y =
x2
1 − 4 ln 2x
1
1 − 2 ln 2x
1 − 2 log 2x
A. y0 =
.
B. y0 = 3
.
C. y0 = 3
.
D. y0 =
.
3
2x ln 10
2x ln 10
x ln 10
x3
Câu 34. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2



A. −3 − 4 2.
B. 3 − 4 2.
C. −3 + 4 2.
D. 3 + 4 2.
Câu 35. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 1.
C. 3.
D. 7.

2
Câu 36. [1228d] Cho phương trình (2 log3 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vô số.
B. 62.
C. 63.
D. 64.
Câu 37. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = ln 10.

B. f 0 (0) = 10.

C. f 0 (0) =

1
.
ln 10

D. f 0 (0) = 1.


Câu 38. [1] Đạo hàm của làm số y = log x là
1
1
ln 10
1
A. y0 = .
B.
.
C. y0 =
.
D. y0 =
.
x
10 ln x
x
x ln 10
Câu 39. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
! của A lên BC là
!
8
7
5
A. (2; 0; 0).
B.
; 0; 0 .
C.
; 0; 0 .
D.
; 0; 0 .

3
3
3
Câu 40. Tính thể tích khối lập phương
biết tổng diện tích tất cả các mặt bằng 18.

A. 27.
B. 3 3.
C. 8.
D. 9.
Trang 3/10 Mã đề 1


Câu 41. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 1).
B. A0 (−3; −3; −3).
C. A0 (−3; 3; 3).
D. A0 (−3; −3; 3).
Câu 42. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Hai mặt.
C. Bốn mặt.
D. Một mặt.

Câu 43. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 1 nghiệm.
B. 3 nghiệm.
C. 2 nghiệm.
D. Vô nghiệm.

Câu 44. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 9 lần.
D. Tăng gấp 3 lần.
Câu 45. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2
a 2
A. a 2.
.
C.
.
D. a 3.
B.
3
2
Câu 46. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. n3 lần.
C. 2n3 lần.
D. 2n2 lần.
Câu 47. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.

B. −1 + 2 sin 2x.
C. −1 + sin x cos x.
D. 1 + 2 sin 2x.
9t
Câu 48. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 1.
B. Vơ số.
C. 2.
D. 0.
Câu 49. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 6.

C. 8.

D. 10.

Câu 50. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Có một hoặc hai.
C. Có hai.
D. Khơng có.
Câu 51. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 11.
B. 10.

C. 12.
D. 4.
Câu 52. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và


√ (A C D) bằng

a 3
a 3
2a 3
.
B.
.
C. a 3.
D.
.
A.
2
2
3
Câu 53. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −4.
B.
.
C. −2.
D. −7.
27

Câu 54. Tính lim
x→1

A. −∞.

x3 − 1
x−1

B. 0.

C. 3.

D. +∞.

1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
B. xy0 = −ey − 1.
C. xy0 = ey − 1.
D. xy0 = ey + 1.

Câu 55. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey + 1.

Trang 4/10 Mã đề 1


Câu 56. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu

khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.016.000.
C. 102.423.000.
D. 102.424.000.
Câu 57. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −6.
B. 6.
C. 5.
2

D. −5.

[ = 60◦ , S O
Câu 58. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.

√ Khoảng cách từ A đến (S√BC) bằng

2a 57
a 57
a 57
.
C.
.
D.
.
A. a 57.

B.
19
19
17
Câu 59. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
ab
1
A. √
.
B. √
.
C. 2
.
.
D. √
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 60. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. [6, 5; +∞).
C. (4; +∞).
D. (−∞; 6, 5).
1
Câu 61. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên

3

một đoạn có độ dài bằng 24.
A. m = −3, m = 4.
B. m = −3.
C. m = 4.
D. −3 ≤ m ≤ 4.
Câu 62. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 3.
C. 1.

D. 0.

d = 300 .
Câu 63. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của khối lăng trụ đã cho. √


a3 3
3a3 3
3
3
A. V = 3a 3.
B. V = 6a .
C. V =
.
D. V =
.
2

2
Câu 64. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. 6.
B. 9.
C. .
D. .
2
2
Câu 65.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) − g(x)]dx =

A.
Z
B.
Z
C.
Z
D.

g(x)dx, với mọi f (x), g(x) liên tục trên R.

f (x)dx −
Z


Z

[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.

mx − 4
Câu 66. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 34.
B. 67.
C. 45.
D. 26.
Câu 67.
√ [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 10.
C. 1.
D. 2.
Câu 68. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 6.

C. 8.

D. 10.

Trang 5/10 Mã đề 1


Câu 69. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.

C. Khối 12 mặt đều.

2
Câu 70. Tính
√ mơ đun của số phức z√4biết (1 + 2i)z = 3 + 4i. √
A. |z| = 5.
B. |z| = 5.
C. |z| = 2 5.

D. Khối 20 mặt đều.
D. |z| = 5.

Câu 71. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.
x+3
nghịch biến trên khoảng
Câu 72. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. 2.
B. Vô số.
C. 3.
D. 1.
Câu 73. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?

1
1
A. log2 a =
.
B. log2 a = loga 2.
C. log2 a = − loga 2.
D. log2 a =
.
loga 2
log2 a
Câu 74. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 15
a3
a3 15
a3 5
.
B.
.
C.
.
D.
.
A.
25
5
3
25
x2 − 5x + 6

Câu 75. Tính giới hạn lim
x→2
x−2
A. −1.
B. 1.
C. 5.
D. 0.
Câu 76. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,

√ N, P bằng


20 3
14 3
A.
C. 6 3.
D.
.
B. 8 3.
.
3
3
Câu 77. [1231h] Trong khơng gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :

=
=
đường thẳng d :
2
3
−5
3
−2
−1
x−2 y−2 z−3
x−2 y+2 z−3
=
=
.
B.
=
=
.
A.
2
2
2
2
3
4
x y−2 z−3
x y z−1
C. =
=
.

D. = =
.
2
3
−1
1 1
1
Câu 78. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.

B. Cả hai câu trên đúng. C. Chỉ có (I) đúng.

D. Chỉ có (II) đúng.
x+2
Câu 79. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 3.
B. 1.

C. 2.
D. Vô số.
d = 60◦ . Đường chéo
Câu 80. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





a3 6
2a3 6
4a3 6
3
A.
.
B. a 6.
C.
.
D.
.
3
3
3
Trang 6/10 Mã đề 1



2mx + 1
1
Câu 81. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 1.
B. 0.
C. −5.
D. −2.
!4x
!2−x
2
3
Câu 82. Tập các số x thỏa mãn


3 # 2
"
!
"
!
#
2
2
2
2
A.
; +∞ .

B. −∞; .
C. − ; +∞ .
D. −∞; .
5
5
3
3
Z 1
Câu 83. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
1
A. .
B. .
2
4
Câu 84. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 8.

C. 1.

D. 0.

C. 30.

D. 20.


Câu 85. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 86. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 10.

C. 8.

D. 6.
2

Câu 87. Tổng diện tích các mặt của một khối lập phương bằng 54cm .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 72cm3 .
C. 46cm3 .
D. 64cm3 .
Câu 88. Phát biểu nào sau đây là sai?
A. lim un = c (un = c là hằng số).
C. lim qn = 0 (|q| > 1).
Câu 89.

1
= 0.
n
1
D. lim k = 0.

n

B. lim

[12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3

có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [0; 1].
B. m ∈ [−1; 0].

C. m ∈ [0; 4].

q
x+ log23 x + 1+4m−1 = 0

D. m ∈ [0; 2].

Câu 90. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3 3
a3 3
a3 3
a3
A.
.

B.
.
C.
.
D.
.
12
8
4
4
Câu 91. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).

B. Cả ba mệnh đề.

C. (I) và (III).

D. (II) và (III).

Câu 92. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3
a3 3

a3 3
3
A. a .
B.
.
C.
.
D.
.
6
3
2
Trang 7/10 Mã đề 1


2
Câu 93. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
C. m = ± 3.
D. m = ±3.
A. m = ±1.
B. m = ± 2.

Câu 94. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 8.

C. 12.

D. 10.


Câu 95. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
√ tích khối chóp S .ABC

√là
√ với đáy và S C = a 3. 3Thể
3
3
2a 6
a 3
a3 6
a 3
.
B.
.
C.
.
D.
.
A.
4
9
2
12
Câu 96. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.

D. 8 đỉnh, 12 cạnh, 8 mặt.
tan x + m
nghịch biến trên khoảng
Câu 97. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
 π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. (1; +∞).
C. [0; +∞).
D. (−∞; 0] ∪ (1; +∞).
Câu 98. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −9.
B. −15.
C. −12.
D. −5.
!
1
1
1
+ ··· +
Câu 99. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
3
5
A. .
B. .
C. +∞.

D. 2.
2
2
x−1
Câu 100. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng AB có độ dài bằng
√ đều ABI có hai đỉnh A, √

A. 6.
B. 2 3.
C. 2.
D. 2 2.
Câu 101. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
B. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn !
un
C. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
!
un
= −∞.
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim

vn
Câu 102. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m > 0.
C. m < 0.
D. m , 0.
x−2
Câu 103. Tính lim
x→+∞ x + 3
2
A. 1.
B. −3.
C. − .
D. 2.
3
Câu 104. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≥ 0.
B. m > − .
C. − < m < 0.
D. m ≤ 0.
4
4
Câu 105. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Giảm đi n lần.
B. Khơng thay đổi.
C. Tăng lên n lần.

D. Tăng lên (n − 1) lần.
Trang 8/10 Mã đề 1


Câu 106. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 4.

C. 8.

D. 5.

Câu 107. Khối lập phương thuộc loại
A. {3; 4}.
B. {5; 3}.

C. {4; 3}.

D. {3; 3}.

Câu 108. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.

.
D.
.
c+2
c+3
c+1
c+2
Câu 109. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
a3 3
8a3 3
4a3 3
8a3 3
A.
.
B.
.
C.
.
D.
.
9
3
9
9
Câu 110. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 6 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
Câu 111. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD



3
10a 3
.
D. 10a3 .
A. 20a3 .
B. 40a3 .
C.
3
 π π
Câu 112. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 7.
B. 1.
C. −1.
D. 3.
!2x−1
!2−x
3
3
Câu 113. Tập các số x thỏa mãn


5
5
A. [1; +∞).
B. (+∞; −∞).
C. [3; +∞).
D. (−∞; 1].

Câu 114. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.
B. 8.

C. 20.

D. 12.

Câu 115. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 8 mặt.
D. 7 mặt.


Câu 116. Phần thực
√ và phần ảo của số√phức z = 2 − 1 − 3i lần lượt√l

A. Phần thực là 2 −√1, phần ảo là √
3.
B. Phần thực là √2 − 1, phần ảo là −√ 3.
C. Phần thực là 1 − 2, phần ảo là − 3.
D. Phần thực là 2, phần ảo là 1 − 3.
Câu 117. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. 6.
C. 1.

D. −1.


Câu 118. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình lăng trụ.
C. Hình tam giác.

D. Hình lập phương.

x2 +x−2

Câu 119. [1] Tập xác định của hàm số y = 4
A. D = (−2; 1).
B. D = R \ {1; 2}.
x+1
Câu 120. Tính lim
bằng
x→+∞ 4x + 3
A. 3.
B. 1.


C. D = R.

D. D = [2; 1].

1
1
.
D. .
3
4

Câu 121. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 20 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 25 triệu đồng.
D. 2, 22 triệu đồng.
C.

Trang 9/10 Mã đề 1


2n + 1
3n + 2
1
3
2
A. 0.
B. .
C. .
D. .
2
2
3
2
Câu 123. Tổng diện tích các mặt của một khối lập phương bằng 96cm . Thể tích của khối lập phương đó
là:
A. 64cm3 .

B. 91cm3 .
C. 84cm3 .
D. 48cm3 .

Câu 124. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3
a 2
a3 6
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
18
6
36
6
Câu 125. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Bát diện đều.
B. Nhị thập diện đều. C. Thập nhị diện đều. D. Tứ diện đều.

Câu 122. Tính giới hạn lim

Câu 126.
thức nào sau đây khơng có nghĩa
√ Biểu
0
A. (− 2) .
B. (−1)−1 .

C.


−1.

−3

D. 0−1 .

Câu 127. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 1587 m.
C. 25 m.
D. 27 m.
Câu 128. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim f (x) = f (a).

x→a
C. lim+ f (x) = lim− f (x) = +∞.
D. lim+ f (x) = lim− f (x) = a.
x→a

x→a

x→a

x→a

Câu 129. Cho z là nghiệm của phương trình x2 + x + 1 = 0. Tính P √
= z4 + 2z3 − z

−1 − i 3
−1 + i 3
.
D. P =
.
A. P = 2.
B. P = 2i.
C. P =
2
2

Câu 130.
Xác
định
phần
ảo

của
số
phức
z
=
(
2 + 3i)2


B. −7.
C. 7.
D. −6 2.
A. 6 2.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

3.

C

2.


B

4.

B

5.

B

6.

7.

B

8.

9.

D

11.

10.

B

14. A


15.

B

16.

17.

D

18.

19.

D

20.

21. A
C

C
C
B
D

26.

B


28.

C

27.

C

24.
D

25.
B

D

30. A

31.

C

32.

33.

C

34.


35. A

36.

37. A

38.
B

40.

41.

C

42.

43.

C

44. A

45.

C

46. A


47.

B

22. A

23.

39.

D

12.

C

13.

29.

C

B

B
C
B
D
B
C


48.

49. A

50.

51.

C

52.

53.

C

54.

55.

C

56.

57.

D

C

B
D
C
D

58.

C

59. A

60. A

61. A

62.

D

64.

D

63.

D

65.

C


66. A

67.

C

68.
1

B


69.

D

70.

71.

D

72.

73. A

74.

75. A


76.

77.

D

79.
81.

C
B

C
D
C

78.

B

80.

B
C

82.
84.

83. A

D

85.
87. A
89.

B

86.

C

88.

C

90.

B

D

B

91. A

92.

93. A


94.

B

96.

B

D

95.
97.

B

98.

99.
101.

D

100.

103. A

104.

105. A


106. A
C

109.

D

113. A

114. A

115. A

116.
B
C
D

123. A
127.

B

B
B

118.

121.
125.


D

110. A
112.

119.

B

108. A

111. A

117.

C

102.

B

107.

D

C

120.


D

122.

D

124. A
126.

C
D

128.

129. A

130. A

2

D
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×