Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (76)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.67 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 9.

B. 5.

C. 7.

D. 0.

Câu 2. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
! của A lên BC là
!
8
7
5
A. (2; 0; 0).
B.
; 0; 0 .
C.


; 0; 0 .
D.
; 0; 0 .
3
3
3
Câu 3. Hàm số nào sau đây khơng có cực trị
1
A. y = x + .
B. y = x4 − 2x + 1.
x
Câu 4. Tính giới hạn lim
x→2

A. 0.

x2 − 5x + 6
x−2
B. 1.

C. y =

x−2
.
2x + 1

D. y = x3 − 3x.

C. 5.


D. −1.

Câu 5. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ nhất
của |z + 2 + i|




12 17
.
C. 5.
B.
D. 34.
A. 68.
17
Câu 6. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD) cùng
vng góc
√ với đáy, S C = a 3. Thể
√ tích khối chóp S .ABCD là
3
3
a 3
a 3
a3
3
A.
.
B.
.

C. a .
D.
.
9
3
3
Câu 7. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (−∞; 0) và (1; +∞). C. (0; 1).
D. (−∞; −1) và (0; +∞).
Câu 8. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. (−∞; −3].
C. [−1; 3].
D. [1; +∞).


Câu 9. Phần thực √
và phần ảo của số phức

√ z = 2 − 1 − 3i lần lượt l

3.
B. Phần thực là 1√− 2, phần ảo là −√ 3.
A. Phần thực là √2, phần ảo là 1 − √
C. Phần thực là 2 − 1, phần ảo là − 3.
D. Phần thực là 2 − 1, phần ảo là 3.
Câu 10. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương

ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
6
15
9
18
Câu 11. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
C.
f (x)dx = f (x).
D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Trang 1/10 Mã đề 1


Câu 12. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

A. 1200 cm2 .
B. 120 cm2 .
C. 160 cm2 .
D. 160 cm2 .
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 13. [3-1214d] Cho hàm số y =
x+2
tam giác
B thuộc (C), đoạn thẳng AB
√ đều ABI có hai đỉnh A, √
√ có độ dài bằng
A. 6.
B. 2 2.
C. 2 3.
D. 2.
Câu 14. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 4.
B. V = 5.
C. V = 3.
D. V = 6.
Câu 15. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 1.
B. 2.
C. 3.
D. 7.





Câu 16. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
9
3
B. 0 ≤ m ≤ .
C. 0 ≤ m ≤ .
D. m ≥ 0.
A. 0 < m ≤ .
4
4
4
Câu 17. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là −3, phần ảo là −4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là 3, phần ảo là 4.
2

2

Câu 18. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x) + g(x)] = a + b.
B. lim [ f (x) − g(x)] = a − b.
x→+∞
x→+∞
f (x) a
= .

D. lim [ f (x)g(x)] = ab.
C. lim
x→+∞
x→+∞ g(x)
b

x2 + 3x + 5
Câu 19. Tính giới hạn lim
x→−∞
4x − 1
1
1
B. 0.
C. .
D. 1.
A. − .
4
4
Câu 20. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. 0, 8.
C. 7, 2.
D. −7, 2.
π
Câu 21. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.


B. T = 2 3.
C. T = 2.
D. T = 4.
A. T = 3 3 + 1.
Z 2
ln(x + 1)
Câu 22. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. 3.
B. 1.
C. −3.
D. 0.


Câu 23.
√ Tìm giá trị lớn nhất của hàm số y = x + 3 + 6√− x

A. 2 3.
B. 3.
C. 3 2.
D. 2 + 3.
Câu 24. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. log2 2020.
C. 13.
D. log2 13.
Câu 25. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un

A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
C. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
!
un
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
Trang 2/10 Mã đề 1


Câu 26. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
4x + 1
Câu 27. [1] Tính lim
bằng?
x→−∞ x + 1
A. 4.
B. 2.
C. −4.
D. −1.

Câu 28. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường



√ thẳng BD bằng
abc b2 + c2
b a2 + c2
a b2 + c2
c a2 + b2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 29. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (2; +∞).
C. R.

D. (0; 2).


Câu 30. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. 4 − 2 ln 2.
C. e.

D. 1.

Câu 31. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. .
D. 4.
8
4
2
Câu 32. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng (S AB). Thiết diện của
√ hình chóp S .ABCD với
√tích là
√mặt phẳng (AIC) có diện
a2 2
a2 7
a2 5
11a2
.
B.

.
C.
.
D.
.
A.
32
4
8
16
Câu 33. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
C. 1.
D. 2.
A. 2.
B. 10.
Câu 34. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.

C. Khối lập phương.

Câu 35. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.

B. 1.

D. Khối bát diện đều.
1

3|x−1|

= 3m − 2 có nghiệm duy

C. 4.

D. 2.
! x3 −3mx2 +m
1
Câu 36. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m = 0.
B. m ∈ R.
C. m ∈ (0; +∞).
D. m , 0.
x+2
Câu 37. Tính lim
bằng?
x→2
x
A. 0.
B. 1.
C. 3.
D. 2.
Câu 38. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.
B. Một hình chóp tam giác và một hình chóp tứ giác.

C. Hai hình chóp tứ giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
2n + 1
Câu 39. Tính giới hạn lim
3n + 2
1
3
A. .
B. .
2
2

C.

2
.
3

D. 0.
Trang 3/10 Mã đề 1


Câu 40.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) − g(x)]dx =

A.
Z

B.

[ f (x) + g(x)]dx =

g(x)dx, với mọi f (x), g(x) liên tục trên R.

f (x)dx −
Z

f (x)dx +

Z
g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
C.

1
Câu 41. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; +∞).
B. (1; 3).
C. (−∞; 1) và (3; +∞). D. (−∞; 3).

Câu 42. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. Không tồn tại.
B. 9.
C. 13.

D. 0.

Câu 43. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {4; 3}.
C. {5; 3}.

D. {3; 4}.

Câu 44. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 8.
cos n + sin n
Câu 45. Tính lim
n2 + 1
A. −∞.
B. 1.

C. 10.

D. 12.

C. +∞.

D. 0.


Câu 46. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; −8)(.
B. A(4; −8).
C. A(−4; 8).
D. A(4; 8).
Câu 47. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3 3
a3 3
a3
3
.
C.
.
D.
.
A. a .
B.
3
6
2
q
2
Câu 48. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3

A. m ∈ [0; 2].
B. m ∈ [−1; 0].
C. m ∈ [0; 1].
D. m ∈ [0; 4].
Câu 49. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
2
9
1
B. .
C.
.
D.
.
A. .
5
5
10
10

Câu 50. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới
" đây?
!
5
5
A.
;3 .

B. (1; 2).
C. 2; .
D. [3; 4).
2
2
Câu 51. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 1.
C. 2.
D. 3.
3
x −1
Câu 52. Tính lim
x→1 x − 1
A. 0.
B. −∞.
C. 3.
D. +∞.
1 3
Câu 53. [2D1-3] Cho hàm số y = − x + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. −2 < m < −1.
C. −2 ≤ m ≤ −1.
D. (−∞; −2] ∪ [−1; +∞).
Trang 4/10 Mã đề 1


Câu 54. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.

B. Số mặt của khối chóp bằng số cạnh của khối chóp.
C. Số mặt của khối chóp bằng 2n+1.
D. Số đỉnh của khối chóp bằng 2n + 1.
Câu 55. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + 2 sin 2x.
B. −1 + sin x cos x.
C. 1 − sin 2x.
D. 1 + 2 sin 2x.
5
Câu 56. Tính lim
n+3
A. 1.
B. 0.
C. 3.
D. 2.
1
Câu 57. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 0 < m ≤ 1.
D. 2 < m ≤ 3.
Câu 58. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
C. f (x) xác định trên K.

B. f (x) liên tục trên K.
D. f (x) có giá trị nhỏ nhất trên K.

Câu 59.√Thể tích của tứ diện đều √

cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
6
12


a3 2
C.
.
2


a3 2
D.
.
4

Câu 60. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).
B. (−∞; −1).
C. (1; +∞).

D. (−∞; 1).


Câu 61. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình lăng trụ.
C. Hình tam giác.

D. Hình chóp.

Câu 62. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
!
1
1
B. Hàm số đồng biến trên khoảng ; 1 .
A. Hàm số nghịch biến trên khoảng ; 1 .
3
3
C. Hàm số nghịch biến trên khoảng (1; +∞).

!
1
D. Hàm số nghịch biến trên khoảng −∞; .
3

Câu 63. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 387 m.

C. 25 m.
D. 1587 m.
Câu 64. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. 3.
B. .
C. 1.
D. .
2
2
2x + 1
Câu 65. Tính giới hạn lim
x→+∞ x + 1
1
A. .
B. −1.
C. 1.
D. 2.
2
Câu 66. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 3.
B. 27.
C. 10.

D. 12.

3
2

Câu 67. Giá
√ trị cực đại của hàm số y =
√ x − 3x − 3x + 2

A. 3 − 4 2.
B. −3 − 4 2.
C. 3 + 4 2.


D. −3 + 4 2.
Trang 5/10 Mã đề 1


Câu 68.

[12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3

có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [−1; 0].
B. m ∈ [0; 1].

C. m ∈ [0; 4].

q
x+ log23 x + 1+4m−1 = 0

D. m ∈ [0; 2].


Câu 69. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −21.
C. P = 21.
D. P = −10.
Câu 70. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 71. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 2
a3 6
a3 3
a 3
.
B.
.
C.
.
D.
.
A.

24
16
48
48
!2x−1
!2−x
3
3
Câu 72. Tập các số x thỏa mãn


5
5
A. [3; +∞).
B. (+∞; −∞).
C. [1; +∞).
D. (−∞; 1].
[ = 60◦ , S A ⊥ (ABCD).
Câu 73. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√chóp S .ABCD là
√ S C là a. Thể tích khối
3
3
3

a 2
a 3
a 2
A.

.
B.
.
C.
.
D. a3 3.
12
6
4
Câu 74. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≥ 3.
C. m < 3.
D. m ≤ 3.
Câu 75. [3-1133d] Tính lim
A.

1
.
3

12 + 22 + · · · + n2
n3

B. 0.

C.

2

.
3

D. +∞.

a
1
+
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
C. 2.
D. 7.

Câu 76. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) =
A. 1.

B. 4.

Câu 77. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 4.
C. 2.
D. 3.
!
5 − 12x
Câu 78. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. Vơ nghiệm.
B. 1.

C. 3.
D. 2.

Câu 79. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là

3
3

a 3
a3
a
3
A.
.
B.
.
C. a3 3.
D.
.
3
4
12
Câu 80. Tính lim
A. 1.

7n2 − 2n3 + 1
3n3 + 2n2 + 1
B. 0.


C.

7
.
3

2
D. - .
3
Trang 6/10 Mã đề 1


Câu 81. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 11 năm.
C. 10 năm.
D. 12 năm.
Câu 82. Tứ diện đều thuộc loại
A. {3; 3}.
B. {3; 4}.

C. {5; 3}.

D. {4; 3}.
0


0

0

Câu 83. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A B C D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; 3; 1).
C. A0 (−3; −3; 3).
D. A0 (−3; 3; 3).
Câu 84.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
( f (x) + g(x))dx =

A.
Z
C.

( f (x) − g(x))dx =

f (x)dx +

Z

g(x)dx.

f (x)dx −

Câu 85. Bát diện đều thuộc loại

A. {3; 3}.
B. {3; 4}.

k f (x)dx = f

B.

Z

Z
g(x)dx.

D.

f (x)g(x)dx =

C. {5; 3}.

Z

f (x)dx, k ∈ R, k , 0.
Z
f (x)dx g(x)dx.
D. {4; 3}.

Câu 86. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.

A. 210 triệu.
B. 212 triệu.
C. 220 triệu.
D. 216 triệu.

2
Câu 87. [4-1228d] Cho phương trình (2 log3 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 64.
C. 62.
D. 63.
Câu 88. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 8 mặt.
C. 7 mặt.

D. 9 mặt.

Câu 89. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.

A. ~u = (3; 4; −4).
B. ~u = (2; 1; 6).
C. ~u = (1; 0; 2).
D. ~u = (2; 2; −1).
Câu 90. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Hai khối chóp tứ giác.
C. Hai khối chóp tam giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 91. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
10a 3
A. 10a3 .
B.
.
C. 40a3 .
D. 20a3 .
3
Câu 92. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 20.
C. 8.
D. 12.
Câu 93. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 1.
C. Vô số.

D. 2.
Trang 7/10 Mã đề 1


Câu 94. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Câu 95. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 3, 55.
C. 20.
D. 24.
Câu 96. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −5.
B. −6.
C. 6.

D. 5.

Câu 97. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 3}.

D. {3; 4}.


2

[ = 60◦ , S O
Câu 98. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ BC) bằng

√ Khoảng cách từ O đến (S

a 57
2a 57
a 57
A. a 57.
.
C.
.
D.
.
B.
17
19
19
Câu 99. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=

=
2
3
−5
3
−2
−1
x−2 y+2 z−3
x y−2 z−3
=
.
B.
=
=
.
A. =
2
3
−1
2
2
2
x−2 y−2 z−3
x y z−1
.
D.
=
=
.
C. = =

1 1
1
2
3
4
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 100. Cho hình chóp S .ABC có BAC
(ABC). Thể tích khối chóp S .ABC√là


3
3
3

a
3
a
3
a
2
A. 2a2 2.
B.
.
C.
.
D.
.
12
24

24


4n2 + 1 − n + 2
Câu 101. Tính lim
bằng
2n − 3
3
A. 2.
B. .
C. 1.
D. +∞.
2
1
Câu 102. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. .
B. − .
C. −3.
D. 3.
3
3
ln x p 2
1
Câu 103. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x

3
8
1
8
1
A. .
B. .
C. .
D. .
9
9
3
3
Câu 104. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C. Khối bát diện đều. D. Khối lập phương.
Câu 105. Dãy số nào có giới hạn bằng!0?
!n
n
6
−2
n3 − 3n
2
A. un = n − 4n.
B. un =
.
C. un =
.
D. un =

.
5
3
n+1
Z 1
Câu 106. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

Trang 8/10 Mã đề 1


A. 1.

B.

1
.
4

C. 0.

D.

1
.
2

 π π
Câu 107. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;

2 2
A. 3.
B. −1.
C. 7.
D. 1.
Câu 108.
√ Thể tích của khối lăng
√ trụ tam giác đều có cạnh√bằng 1 là:
3
3
3
A.
.
B.
.
C.
.
2
12
4
Câu 109. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 2.

C. 4.

D.

3
.

4

D. 3.

1
5

Câu 110. [2] Tập xác định của hàm số y = (x − 1) là
A. D = (−∞; 1).
B. D = R \ {1}.
C. D = (1; +∞).

D. D = R.

Câu 111. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. Vơ nghiệm.
C. 3.

D. 2.

Câu 112. Tính lim
x→5

2
A. − .
5

x2 − 12x + 35
25 − 5x

2
B. .
5

C. −∞.

D. +∞.

Câu 113. ZCho hai hàmZy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
0
C. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
A. Nếu

f (x)dx =


Câu 114. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n3 lần.
C. 2n2 lần.
D. n3 lần.
Câu 115. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 30.

C. 8.

D. 12.

Câu 116. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 8 mặt.
C. 10 mặt.

D. 4 mặt.

Câu 117. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. −7.
C. −3.

D. Không tồn tại.

Câu 118. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một

nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
B. F(x) = G(x) trên khoảng (a; b).
C. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
D. Cả ba câu trên đều sai.
Câu 119. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Có một hoặc hai.
C. Khơng có.
D. Có một.
Trang 9/10 Mã đề 1


x+3
Câu 120. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 3.
B. 2.
C. Vô số.
D. 1.
1 3
Câu 121. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = −3, m = 4.

C. m = 4.
D. m = −3.
Câu 122. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√M + m
√ của hàm số. Khi đó tổng

A. 8 3.
B. 8 2.
C. 7 3.
D. 16.
Câu 123. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 91cm3 .
C. 64cm3 .
D. 48cm3 .

Câu 124. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vô số.
B. 62.
C. 63.
D. 64.
Câu 125. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a

x→b
x→b
C. lim+ f (x) = f (a) và lim− f (x) = f (b).
D. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→a

x→b

x→b

Câu 126. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có hai.
B. Có một.
C. Khơng có.
D. Có vơ số.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 127. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 3.
B. 2.
C. 4.
D. 5.
Câu 128. Xét hai khẳng đinh sau

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều sai.

C. Chỉ có (II) đúng.

Câu 129. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 9 mặt.
C. 6 mặt.

D. Cả hai đều đúng.
D. 3 mặt.

Câu 130. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A


2.
C

3.
5.

B

7. A

4.

D

6.

D

8. A

9.

11.

C
D

12.


15.
C

20.

B

21.

C

24.

C

19. A
D

22.

C

17.

B

18.

B


13.

14. A
16.

B

D

26. A

D

23.

C

25.

C

27. A

28.

29.

D

30.


C

31.

32.

C

33.

34.

D

35.

D
B
C
B

36. A

37.

38. A

39.


C
C

40.

D

41.

42.

D

43. A

44. A
46.
48.

D

45.

D

47.

D

49.


B

50. A

C

51. A

52.

C

53.

54. A

C

55. A

56.

B

57.

58.

B


59.

60. A

61.

62. A

63. A

64.

D

D

D
B
C

65.

D

66. A

67.

D


68. A

69.
1

B


70.
72.
74.

C
D

77.

D

81.

D

85.

B
D

88.

90. A
B

89.

C

91.

D

93.

D

96. A

97.
C

100.

D
B

C

101.

C


103. A
D

105.

106.

D

107.

108.

C

109.

110.

C

111. A

B

115.

116. A


117.
C

120. A
122.

D
B

126. A
128.

C
D
C

113. A

114. A

124.

B

99.

104.

118.


B
C

95. A

98.

D

87.

94. A

112.

B

83.

84.

102.

B

79. A

B

82. A


92.

C

75. A

80.

86.

D

73.

B

76.
78.

71.

D

C

2

B
D


119.

B

121.

B

123.

C

125.

C

127.

C

130.

C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×