TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
trị nhỏ
" nhất
! của biểu thức P = x + 2y thuộc tập nào dưới "đây?!
5
5
A.
;3 .
B. (1; 2).
C. 2; .
D. [3; 4).
2
2
√
ab. Giá
Câu 2. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 1.
C. Vơ số.
D. 2.
Câu 3. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m > 0.
C. m < 0.
D. m = 0.
2
Câu 4. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 2 − log2 3.
B. 3 − log2 3.
C. 1 − log3 2.
D. 1 − log2 3.
Câu 5. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD
√
√ là
3
3
3
3
4a 3
8a 3
a 3
8a 3
A.
.
B.
.
C.
.
D.
.
9
3
9
9
3
Câu 6. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e2 .
C. e3 .
D. e.
Câu 7. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 3.
B. T = e + 1.
C. T = e + .
D. T = 4 + .
e
e
Câu 8. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
18
9
15
6
Câu 9. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
tan x + m
Câu 10. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. [0; +∞).
C. (−∞; −1) ∪ (1; +∞). D. (1; +∞).
Câu 11. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 12. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 144.
C. 4.
Câu 13. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình tam giác.
C. Hình lăng trụ.
D. 24.
D. Hình chóp.
Trang 1/10 Mã đề 1
Câu 14. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≥ 3.
C. m < 3.
D. m ≤ 3.
Câu 15. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
.
C. f 0 (0) = ln 10.
D. f 0 (0) = 10.
A. f 0 (0) = 1.
B. f 0 (0) =
ln 10
Câu 16. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2√
A. m = ±1.
B. m = ± 2.
C. m = ±3.
D. m = ± 3.
Câu 17.
!0 nào sau đây sai?
Z Mệnh đề
A.
f (x)dx = f (x).
Z
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
Câu 18. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −21.
B. P = 21.
C. P = 10.
D. P = −10.
Câu 19. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 23.
C. 21.
D. 22.
3
x −1
Câu 20. Tính lim
x→1 x − 1
A. 3.
B. −∞.
C. +∞.
D. 0.
5
Câu 21. Tính lim
n+3
A. 3.
B. 2.
C. 1.
D. 0.
Câu 22. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d ⊥ P.
C. d nằm trên P.
D. d nằm trên P hoặc d ⊥ P.
8
Câu 23. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 64.
B. 82.
C. 96.
D. 81.
Câu 24. Bát diện đều thuộc loại
A. {3; 3}.
B. {4; 3}.
4x + 1
Câu 25. [1] Tính lim
bằng?
x→−∞ x + 1
A. −4.
B. 2.
C. {5; 3}.
D. {3; 4}.
C. 4.
D. −1.
[ = 60◦ , S A ⊥ (ABCD).
Câu 26. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là
√
3
3
√
a
3
a
2
a3 2
C.
A.
.
B. a3 3.
.
D.
.
12
6
4
Câu 27.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 8.
C. 27.
D. 9.
x+3
Câu 28. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 3.
B. 1.
C. 2.
D. Vô số.
Trang 2/10 Mã đề 1
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = e − 1.
C. xy0 = −ey − 1.
D. xy0 = −ey + 1.
Câu 29. [3-12217d] Cho hàm số y = ln
A. xy0 = ey + 1.
Câu 30. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vuông cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng góc với đáy, S C = a √3. Thể tích khối chóp S .ABCD
là
√
3
3
3
a
a 3
a 3
A.
.
B.
.
C.
.
D. a3 .
3
9
3
un
Câu 31. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. −∞.
B. 0.
C. 1.
D. +∞.
Câu 32. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 72cm3 .
C. 27cm3 .
D. 46cm3 .
x−3
Câu 33. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. −∞.
C. 1.
D. 0.
Câu 34. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là
√
a3
a3
4a3 3
2a3 3
.
B.
.
C.
.
D.
.
A.
3
3
6
3
Câu 35. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|
√
√
√
12 17
.
B. 5.
C. 34.
D. 68.
A.
17
Câu 36. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng
√
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3
√
√
2 3
D. 2.
A.
.
B. 1.
C. 3.
3
Câu 37. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
24
6
36
12
Câu 38. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.016.000.
C. 102.423.000.
D. 102.424.000.
Câu 39. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. −7, 2.
C. 0, 8.
Câu 40. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 20.
C. 8.
√
2
Câu 41. Xác định phần ảo của số
√
√ phức z = ( 2 + 3i)
A. −7.
B. 6 2.
C. −6 2.
D. 7, 2.
D. 30.
D. 7.
Trang 3/10 Mã đề 1
Câu 42. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 + 2e
1 − 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4e + 2
4 − 2e
4 − 2e
4e + 2
x
x+1
x−2 x−1
+
+
+
và y = |x + 1| − x − m (m là tham
Câu 43. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3].
C. (−3; +∞).
D. (−∞; −3).
Câu 44. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 48cm3 .
C. 91cm3 .
D. 64cm3 .
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 45. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
√
a3 3
a3 2
a3 3
2
.
B.
.
C. 2a 2.
.
A.
D.
24
12
24
2−n
Câu 46. Giá trị của giới hạn lim
bằng
n+1
A. 0.
B. 1.
C. −1.
D. 2.
Câu 47. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e−2 − 2; m = 1.
C. M = e−2 + 1; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 48. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Đường phân giác góc phần tư thứ nhất.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Trục thực.
Câu 49. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
!
x+1
Câu 50. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
4035
2016
A.
.
B.
.
C. 2017.
D.
.
2018
2018
2017
Câu 51. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1079
23
1728
1637
A.
.
B.
.
C.
.
D.
.
4913
68
4913
4913
Câu 52. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
A. 2.
B. 2.
C. 1.
D. 10.
log(mx)
= 2 có nghiệm thực duy nhất
Câu 53. [3-1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0 ∨ m = 4.
B. m ≤ 0.
C. m < 0.
D. m < 0 ∨ m > 4.
Câu 54. Tứ diện đều thuộc loại
A. {5; 3}.
B. {3; 3}.
C. {3; 4}.
D. {4; 3}.
Câu 55. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −5.
B. −15.
C. −9.
D. −12.
Trang 4/10 Mã đề 1
Câu 56. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. F(x) = G(x) trên khoảng (a; b).
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. Cả ba câu trên đều sai.
Câu 57. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối bát diện đều.
C. Khối tứ diện đều.
D. Khối 12 mặt đều.
Câu 58. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.
B. 3.
C. 0.
D. 2.
Câu 59. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0.
D. m < 0 ∨ m = 4.
Câu 60. [1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m > 4.
B. m ≤ 0.
2
x −9
Câu 61. Tính lim
x→3 x − 3
A. −3.
B. +∞.
C. 6.
π
Câu 62. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2
√
√
2 π4
3 π6
C.
e .
e .
A. 1.
B.
2
2
D. 3.
D.
1 π3
e .
2
d = 300 .
Câu 63. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V của khối lăng trụ đã cho.
√
3
√
a 3
3a3 3
3
3
A. V =
.
B. V = 3a 3.
C. V = 6a .
D. V =
.
2
2
Câu 64. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC theo a
√
√
a3 15
a3
a3 15
a3 5
A.
.
B.
.
C.
.
D.
.
5
3
25
25
1
Câu 65. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 2 ≤ m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 0 < m ≤ 1.
2
Câu 66. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
2
1
1
A. 3 .
B. 2 .
C. √ .
e
e
2 e
Câu 67. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) có giá trị nhỏ nhất trên K.
D.
1
.
2e3
B. f (x) có giá trị lớn nhất trên K.
D. f (x) xác định trên K.
Trang 5/10 Mã đề 1
!
!
!
4x
1
2
2016
Câu 68. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
.
C. T = 1008.
D. T = 2016.
A. T = 2017.
B. T =
2017
Câu 69. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
B. −e.
C. − .
D. − 2 .
2e
e
e
Câu 70. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (1; 3; 2).
C. (2; 4; 3).
D. (2; 4; 6).
Câu 71. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 3
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
24
24
8
48
x2 − 5x + 6
Câu 72. Tính giới hạn lim
x→2
x−2
A. 1.
B. −1.
C. 0.
D. 5.
Câu 73. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (0; −2).
C. (−1; −7).
D. (2; 2).
Câu 74. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
.
B. .
C. 2.
D. 1.
A.
2
2
Câu 75. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 6.
B. V = 3.
C. V = 5.
D. V = 4.
Câu 76. [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 1.
B. 2.
C. 5.
D. 3.
Câu 77. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng M + m
√
√
A. 8 2.
B. 16.
C. 8 3.
D. 7 3.
!
5 − 12x
Câu 78. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 1.
B. 3.
C. 2.
D. Vơ nghiệm.
d = 120◦ .
Câu 79. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
B. 3a.
C. 2a.
D. 4a.
A.
2
log 2x
Câu 80. [3-1229d] Đạo hàm của hàm số y =
là
x2
1 − 2 ln 2x
1 − 4 ln 2x
1
1 − 2 log 2x
A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.
D. y0 =
.
3
x ln 10
2x ln 10
2x ln 10
x3
2mx + 1
1
Câu 81. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −5.
B. 1.
C. 0.
D. −2.
x+1
Câu 82. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. .
D. 1.
3
2
6
Trang 6/10 Mã đề 1
Câu 83. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 84. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m ≥ .
C. m > .
D. m < .
4
4
4
4
Câu 85. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
C.
.
D.
.
A. a3 .
B.
6
12
24
Câu 86. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng
√
√
√
14 3
20 3
A.
.
B. 6 3.
C. 8 3.
D.
.
3
3
Câu 87. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 2.
B. 1.
C. 5.
D. 3.
Câu 88. Khối đa diện đều loại {5; 3} có số đỉnh
A. 20.
B. 12.
C. 30.
D. 8.
Câu 89. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 8.
C. 5.
D. 6.
Câu 90. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z
u0 (x)
dx = log |u(x)| + C.
C.
u(x)
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
√
Câu 91. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 63.
C. 64.
D. 62.
Câu 92. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [1; 2].
B. (−∞; +∞).
C. [−1; 2).
D. (1; 2).
Câu 93. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
2n2 − 1
Câu 94. Tính lim 6
3n + n4
2
A. .
B. 1.
C. 2.
D. 0.
3
Câu 95. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp
√ S .ABCD là
√ phẳng vng góc với 3(ABCD).
√
3
3
√
a 3
a 3
a 2
A. a3 3.
B.
.
C.
.
D.
.
2
4
2
Trang 7/10 Mã đề 1
Câu 96. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√
√
√
√ thẳng BD bằng
b a2 + c2
a b2 + c2
abc b2 + c2
c a2 + b2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 97. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 8.
C. 20.
D. 12.
Câu 98. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = x + ln x.
C. y0 = 1 + ln x.
D. y0 = ln x − 1.
Câu 99. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 100. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −6.
B. 6.
C. −5.
2
D. 5.
Câu 101. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
5
23
13
.
B.
.
C. − .
D. −
.
A.
100
25
16
100
Câu 102. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp
√ là√
A. 8, 16, 32.
B. 2, 4, 8.
C. 2 3, 4 3, 38.
D. 6, 12, 24.
Câu 103. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp 4 lần.
C. Tăng gấp đơi.
D. Tăng gấp 8 lần.
√
√
Câu 104.
√ Tìm giá trị lớn nhất của hàm
√ số y = x + 3 + 6 − x
√
A. 3 2.
B. 2 + 3.
C. 3.
D. 2 3.
x−1 y z+1
Câu 105. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x − y + 2z − 1 = 0.
B. 2x + y − z = 0.
C. −x + 6y + 4z + 5 = 0.
D. 10x − 7y + 13z + 3 = 0.
Câu 106. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 11 năm.
C. 12 năm.
D. 10 năm.
Câu 107. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
n2 − 2
.
B.
u
=
.
A. un =
n
(n + 1)2
5n − 3n2
n2 − 3n
.
n2
1 − 2n
.
5n + n2
[ = 60◦ , S O
Câu 108. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ O đến (S√BC) bằng
√
√
a 57
2a 57
a 57
A.
.
B. a 57.
C.
.
D.
.
19
19
17
Câu 109. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
C. un =
D. un =
Trang 8/10 Mã đề 1
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 220 triệu.
B. 216 triệu.
C. 212 triệu.
D. 210 triệu.
q
2
Câu 110. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x + log23 x + 1 + 4m −
√ i
h
1 = 0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 2].
C. m ∈ [−1; 0].
D. m ∈ [0; 4].
Câu 111. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
ab
1
A. √
.
B. √
.
C. 2
.
D. √
.
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 112. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
B. aαβ = (aα )β .
C. aα+β = aα .aβ .
D. aα bα = (ab)α .
A. β = a β .
a
Câu 113. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc
60◦ . Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n.
Thể tích khối
√
√
√ chóp S .ABMN là 3 √
3
a 3
4a3 3
2a3 3
5a 3
.
B.
.
C.
.
D.
.
A.
3
2
3
3
Câu 114. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = 2.
C. y(−2) = −18.
D. y(−2) = 22.
Câu 115. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √
√
a3 3
a3 3
a3 3
a3
A.
.
B.
.
C.
.
D.
.
8
12
4
4
Câu 116. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
B. 3.
C. 1.
D. .
A. .
2
2
Câu 117. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là
√
√
3
3
a 2
a3 6
a3 3
a 3
.
B.
.
C.
.
D.
.
A.
24
16
48
48
Câu 118. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. 2e4 .
C. −2e2 .
D. −e2 .
! x3 −3mx2 +m
1
Câu 119. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m = 0.
B. m ∈ (0; +∞).
C. m ∈ R.
D. m , 0.
√
Câu 120. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là
√
√
√
πa3 6
πa3 3
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
3
2
6
Câu 121. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa hai đường thẳng S B và AD bằng
√
√
√
√
a 2
a 2
A. a 2.
B. a 3.
C.
.
D.
.
3
2
Trang 9/10 Mã đề 1
√
Câu 122. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là
√
3
√
a3
a3 3
a 3
3
.
B.
.
C. a 3.
D.
.
A.
3
4
12
Câu 123. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 5%.
C. 0, 8%.
D. 0, 7%.
Câu 124. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
120.(1, 12)3
(1, 01)3
triệu.
B.
m
=
triệu.
A. m =
(1, 01)3 − 1
(1, 12)3 − 1
100.(1, 01)3
100.1, 03
C. m =
triệu.
D. m =
triệu.
3
3
3a
Câu 125. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
a
a
a 2
2a
.
B. .
C. .
D.
.
A.
3
4
3
3
Câu 126. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (0; 1).
C. (−1; 0).
D. (−∞; −1) và (0; +∞).
Câu 127. [1]! Tập xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A. −∞; .
B. − ; +∞ .
C. −∞; − .
2
2
2
!
1
; +∞ .
D.
2
Câu 128. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
a
1
Câu 129. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 2.
B. 7.
C. 4.
D. 1.
Câu 130. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 17 tháng.
C. 15 tháng.
D. 18 tháng.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
2.
3. A
4. A
5.
D
D
6. A
9.
7. A
10.
D
D
11.
B
B
12.
B
13.
14.
B
15.
C
16. A
17.
D
18. A
19.
D
20. A
21.
D
D
22.
D
23.
24.
D
25.
26.
D
27. A
C
28. A
29.
B
30. A
31.
B
32.
33.
C
D
34.
D
35. A
36.
D
37.
38.
D
39.
B
41.
B
B
40. A
42.
D
43.
44.
D
45. A
46.
C
47.
48.
C
49.
52.
B
D
57.
D
D
D
59.
60.
D
61.
68.
63.
B
64.
D
55.
58.
66.
C
53. A
C
56. A
62.
B
51.
50. A
54.
D
65. A
C
67. A
B
69. A
C
1
C
D
70.
72.
D
B
76.
B
73.
B
D
75.
C
74.
71.
B
77.
B
78. A
79. A
80. A
81.
C
83.
C
85.
C
82.
C
84. A
86.
87. A
B
88. A
90.
92.
C
B
D
94.
89.
D
91.
D
93.
B
95.
B
96.
C
97.
D
98.
C
99.
D
100.
C
101.
D
103.
D
105.
D
107.
D
D
102.
104. A
106.
B
108. A
109.
110.
C
111. A
112. A
113.
114.
C
C
B
115. A
117.
116. A
118.
D
D
119. A
121.
D
122. A
123.
D
124. A
125. A
120.
B
126.
128.
C
B
130. A
2
127.
B
129.
B