Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (495)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.71 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
A. −2.

B. −4.

C. −7.

D.

67
.
27

Câu 2. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m = 0.
C. m < 0.

D. m , 0.

Câu 3. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.


B. 20.

D. 12.

C. 30.

Câu 4. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD) cùng
vuông góc với đáy, S C = a 3. Thể
√ tích khối chóp S .ABCD
√là
3
3
a 3
a 3
a3
A. a3 .
B.
.
C.
.
D.
.
9
3
3
3

Câu 5. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .

B. e3 .
C. e.
Câu 6. Cho
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
A. |z| = 17.
B. |z| = 10.
C. |z| = 17.


4n2 + 1 − n + 2
Câu 7. Tính lim
bằng
2n − 3
A. +∞.
B. 2.
C. 1.

D. e2 .
D. |z| =

D.


10.

3
.
2

Câu 8. Phát biểu nào sau đây là sai?

1
A. lim = 0.
n
C. lim qn = 0 (|q| > 1).

B. lim un = c (un = c là hằng số).
1
D. lim k = 0.
n
0 0 0 0
Câu 9. √[2] Cho hình lâp phương√ABCD.A B C D cạnh a. √
Khoảng cách từ C đến AC√0 bằng
a 6
a 6
a 6
a 3
A.
.
B.
.
C.
.
D.
.
2
3
7
2
9t
Câu 10. [4] Xét hàm số f (t) = t

, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. 1.
C. 2.
D. Vô số.

Câu 11. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = R \ {0}.
C. D = R \ {1}.
D. D = (0; +∞).
2
2
2
1 + 2 + ··· + n
Câu 12. [3-1133d] Tính lim
n3
1
2
A. .
B. +∞.
C. 0.
D. .
3
3
Câu 13. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của√|z + 2 + i|




12 17
A.
.
B. 68.
C. 34.
D. 5.
17
Câu 14. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.
C. Khối lập phương.
D. Khối tứ diện đều.
Trang 1/11 Mã đề 1


Câu 15. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 2.
B. 3.
C. 1.

D. 5.

Câu 16. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
B. T = e + 1.
C. T = e + 3.
D. T = 4 + .

A. T = e + .
e
e
Câu 17. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 7.

B. 5.

C. 0.

Câu 18. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
.
B. 1.
C. 2.
A.
2

D. 9.

D.

1
.
2


Câu 19. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy

là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3
a 6
a3 6
a3 2
a 6
.
B.
.
C.
.
D.
.
A.
36
6
18
6
Câu 20. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 20, 128 triệu đồng. C. 50, 7 triệu đồng.
D. 3, 5 triệu đồng.
Câu 21. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 10.


C. 4.

D. 6.

Câu 22. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
.
B. 2.
C. 1.
D. 3.
A.
3
1
Câu 23. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 3.
B. 1.
C. 2.

D. 4.
Câu 24. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 9.
B. 13.
C. Không tồn tại.

D. 0.

Câu 25. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 3.
B. 2a 6.
C. a 6.
D.
.
2
Câu 26. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng
√M + m


A. 16.
B. 8 2.
C. 7 3.
D. 8 3.

Câu 27. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (−1; −7).
C. (2; 2).

D. (1; −3).

Câu 28.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
A.

[ f (x) − g(x)]dx =

f (x)dx −

g(x)dx, với mọi f (x), g(x) liên tục trên R.
Trang 2/11 Mã đề 1


Z
B.

[ f (x) + g(x)]dx =

Z

f (x)dx +


Z
g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
C.

Câu 29. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Hai khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Hai khối chóp tam giác.
Câu 30. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m > 3.
C. m ≤ 3.
D. m < 3.
Câu 31. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − 2 .
B. − .

C. − .
D. −e.
e
e
2e
Câu 32. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 27.
B. 12.
C. 18.
D.
.
2
1
Câu 33. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 0 < m ≤ 1.
D. 2 < m ≤ 3.



x=t




Câu 34. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 

y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z − 3) = .
D. (x + 3) + (y + 1) + (z + 3) = .
4
4
Câu 35. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là



a3 3
2a3 3
a3 3
A.
.
B.
.
C.
.
D. a3 3.
3
6
3
Câu 36. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. 4.
C. 2.
D. −4.
Câu 37. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

B. 25.
C. 5.
A. 5.

D.

Câu 38. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. 0, 8.

C. −7, 2.

D. 7, 2.



1
.
5

Câu 39. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ Thể tích khối chóp S 3.ABC
√ là

3
a 3
a 3
a3 2
a3 3
A.
.
B.
.
C.
.
D.
.
12

6
12
4
Trang 3/11 Mã đề 1


d = 300 .
Câu 40. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của khối lăng trụ đã cho. √


3a3 3
a3 3
3
3
C. V =
.
D. V =
.
A. V = 6a .
B. V = 3a 3.
2
2
Câu 41. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 8 năm.
C. 9 năm.
D. 10 năm.

Câu 42. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Câu 43. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2

A. −3 + 4 2.
B. 3 − 4 2.
C. −3 − 4 2.
!
1
1
1
+
+ ··· +
Câu 44. Tính lim
1.2 2.3
n(n + 1)
3
A. 2.
B. 0.
C. .
2
Câu 45. Dãy số nào sau đây có giới hạn khác 0?
1
n+1
sin n
A. .
B.

.
C.
.
n
n
n


D. 3 + 4 2.

D. 1.
1
D. √ .
n

x−2 x−1
x
x+1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3).
C. (−∞; −3].

D. (−3; +∞).
Câu 46. [4-1212d] Cho hai hàm số y =

Câu 47. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 2.
C. Vô nghiệm.

D. 3.

Câu 48. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (2; 4; 6).
C. (2; 4; 4).
D. (1; 3; 2).
Câu 49. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −15.
B. −5.
C. −9.
D. −12.
Câu 50. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số mặt của khối chóp bằng 2n+1.
C. Số cạnh của khối chóp bằng 2n.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
Câu 51. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 5.
B. 6.

C. −5.
2

D. −6.
Z 1
6
2
3
Câu 52. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. −1.

B. 4.

C. 2.

D. 6.
Trang 4/11 Mã đề 1


Câu 53. [1] !Tập xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A.
; +∞ .

B. −∞; .
C. − ; +∞ .
2
2
2

!
1
D. −∞; − .
2

Câu 54. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 12.

D. 30.

C. 20.

Câu 55. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. 1.
C. −1.

D. 2.

Câu 56.
các khẳng định sau, khẳng định nào sai?
Z Trong
u0 (x)

A.
dx = log |u(x)| + C.
u(x)
B. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Câu 57. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 10.

C. 6.

D. 12.

x
Câu 58. Tính diện tích hình phẳng giới hạn bởi các đường
√ y = xe , y = 0, x = 1.
1
3
3
A. .
B. .
C.
.
D. 1.
2
2
2


Câu 59. Khối đa diện đều loại {5; 3} có số mặt
A. 12.
B. 20.

C. 8.

D. 30.

Câu 60. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.

C. Khối bát diện đều.

D. Khối 12 mặt đều.

Câu 61. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
B. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =

g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.

Câu 62. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. Vô nghiệm.
B. 3 nghiệm.
C. 2 nghiệm.
D. 1 nghiệm.
Câu 63.
Z Các khẳng định nào sau
Z đây là sai?
A.
Z
C.

Z

f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. B.
f (x)dx = F(x) + C ⇒
!0
Z
Z
k f (x)dx = k
f (x)dx, k là hằng số.

D.
f (x)dx = f (x).

Z

f (t)dt = F(t) + C.

Câu 64. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 7.
C. 1.
D. 3.
Z 1
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
Câu 65. Cho
0

A. 0.

B. 1.

C.

1
.
4

D.

1

.
2
Trang 5/11 Mã đề 1


mx − 4
Câu 66. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 26.
C. 34.
D. 45.
a
1
Câu 67. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 4.
B. 1.
C. 2.
D. 7.
[ = 60◦ , S A ⊥ (ABCD).
Câu 68. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là

3
3

a3 2

a
2
a
3
A.
.
B. a3 3.
C.
.
D.
.
4
12
6
2
Câu 69. Tính

√4 mơ đun của số phức z√biết (1 + 2i)z = 3 + 4i.
B. |z| = 5.
C. |z| = 5.
D. |z| = 2 5.
A. |z| = 5.
Câu 70. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 72cm3 .
C. 27cm3 .
D. 64cm3 .
Câu 71. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)

một góc bằng 60◦ . Thể√tích khối chóp S .ABC là


a3 3
a3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
12
8
4
4
Câu 72. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 0.
C. 2.
D. 1.
Câu 73. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
n2 − 3n
A. un =
.
B.

u
=
.
n
(n + 1)2
n2

C. un =

n2 − 2
.
5n − 3n2

D. un =

1 − 2n
.
5n + n2

Câu 74. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường



√ thẳng BD bằng
a b2 + c2
abc b2 + c2
c a2 + b2
b a2 + c2

.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 75. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
5
9
13
.
B. −
.
C. − .
D.
.
A.
100
100
16
25
7n2 − 2n3 + 1

Câu 76. Tính lim 3
3n + 2n2 + 1
2
7
A. 1.
B. - .
C. .
D. 0.
3
3

Câu 77. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 3
πa3 6
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6

2
6
3
x−1
Câu 78. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng AB

√ có độ dài bằng
A. 2.
B. 2 2.
C. 2 3.
D. 6.
Câu 79. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng (0; 1).
Trang 6/11 Mã đề 1


Câu 80. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 2.
C. 1.

Câu 81. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1

1
A. .
B. −3.
C. − .
3
3

D. 0.

D. 3.

x+2
Câu 82. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. 2.
C. Vơ số.
D. 3.
Câu 83. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 6.
B. V = 5.
C. V = 4.
D. V = 3.
Câu 84. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh AC, AB. Tọa độ hình chiếu
!

! của A lên BC là
!
8
7
5
A.
; 0; 0 .
B. (2; 0; 0).
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
Câu 85. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 10.

C. 12.

D. 20.

Câu 86. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 64cm3 .
C. 48cm3 .
D. 84cm3 .
x

x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 87. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2].
B. (2; +∞).
C. [2; +∞).
D. (−∞; 2).
Câu 88. Bát diện đều thuộc loại
A. {3; 3}.
B. {4; 3}.

C. {3; 4}.

D. {5; 3}.

Câu 89. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. aαβ = (aα )β .
B. aα+β = aα .aβ .
C. β = a β .
D. aα bα = (ab)α .

a
Câu 90. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
18
6
15
9
log(mx)
Câu 91. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m ≤ 0.
B. m < 0 ∨ m > 4.
C. m < 0 ∨ m = 4.
D. m < 0.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 92. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là




a3 3
a3 2
a3 3
2
A.
.
B.
.
C. 2a 2.
D.
.
12
24
24
Câu 93.
√ [4-1246d] Trong tất cả√các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất của |z|
A. 3.
B. 5.
C. 2.
D. 1.
Trang 7/11 Mã đề 1


Câu 94. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
Câu 95. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng

người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 23.
B. 21.
C. 22.
D. 24.
Câu 96. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 5 mặt.

D. 4 mặt.

Câu 97. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 160 cm2 .
C. 1200 cm2 .
D. 160 cm2 .
Câu 98. [1] Tính lim
A. 0.

1 − n2
bằng?
2n2 + 1
1
B. .
3

1

C. − .
2

D.

1
.
2

3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
a
a 2
2a
A. .
B. .
C.
.
D.
.
3
4
3
3
Câu 99. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =


Câu 100. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 3.
C. 27.
D. 12.
1
Câu 101. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = −3.
B. m = 4.
C. −3 ≤ m ≤ 4.
D. m = −3, m = 4.
Câu 102. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình lập phương.
C. Hình tam giác.

D. Hình chóp.

Câu 103. Phát biểu nào sau đây là sai?
A. lim qn = 1 với |q| > 1.
1
C. lim √ = 0.
n

1
= 0 với k > 1.

nk
D. lim un = c (Với un = c là hằng số).

B. lim

2

Câu 104. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.
B. 2 − log2 3.
C. 3 − log2 3.

D. 1 − log3 2.

Câu 105. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. m ≤ 3.
C. −3 ≤ m ≤ 3.
D. −2 ≤ m ≤ 2.
!
3n + 2
2
Câu 106. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 3.
B. 2.
C. 5.
D. 4.

Trang 8/11 Mã đề 1


!
1
1
1
Câu 107. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
5
3
A. .
B. +∞.
C. 2.
D. .
2
2
Câu 108. Cho hình chóp S .ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 6
a3 3
a3 2
a 3

.
B.
.
C.
.
D.
.
A.
48
48
24
16
Câu 109. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −21.
C. P = 21.
D. P = −10.
1
Câu 110. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 < m ≤ 1.
C. 0 ≤ m ≤ 1.
D. 2 < m ≤ 3.
Câu 111.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
dx = x + C, C là hằng số.

A.

Z

B.

xα dx =

Z

1
dx = ln |x| + C, C là hằng số.
x

xα+1
+ C, C là hằng số.
α+1

0dx = C, C là hằng số.



x = 1 + 3t




Câu 112. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi





z = 1
qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=
1
+
7t
x
=
1
+
3t
x
=
−1
+

2t
x = −1 + 2t
















A. 
.
B. 
C. 
y=1+t
y = 1 + 4t .
y = −10 + 11t . D. 
y = −10 + 11t .

















z = 1 + 5t
z = 1 − 5t
z = 6 − 5t
z = −6 − 5t
C.

D.

Câu 113. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {5; 3}.

D. {3; 5}.

Câu 114. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.
B. Một mặt.

C. Ba mặt.

D. Hai mặt.

Câu 115. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.

B. 2.


x+ 1−x2

C. 4.


x+ 1−x2

1
3|x−1|

= 3m − 2 có nghiệm duy

D. 1.

Câu 116. [12215d] Tìm m để phương trình 4
− 4.2
− 3m + 4 = 0 có nghiệm
3
3

9
A. 0 ≤ m ≤ .
B. m ≥ 0.
C. 0 < m ≤ .
D. 0 ≤ m ≤ .
4
4
4
2
2x
Câu 117. [2-c] Giá trị nhỏ nhất của hàm số y = (x − 2)e trên đoạn [−1; 2] là
A. −e2 .
B. 2e4 .
C. 2e2 .
D. −2e2 .
Câu 118. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 3 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 18 lần.
Câu 119. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 1587 m.
B. 27 m.
C. 387 m.
D. 25 m.

Trang 9/11 Mã đề 1


Câu 120. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. 4 − 2 ln 2.
C. e.
D. −2 + 2 ln 2.
2
m
ln x
trên đoạn [1; e3 ] là M = n , trong đó n, m là
Câu 121. [3] Biết rằng giá trị lớn nhất của hàm số y =
x
e
các số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 24.
C. S = 32.
D. S = 135.
Câu 122. [1] Đạo hàm của hàm số y = 2 x là
1
1
A. y0 = 2 x . ln x.
B. y0 = x
.
C. y0 = 2 x . ln 2.
D. y0 =
.
2 . ln x

ln 2
Câu 123. [1231h] Trong khơng gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x y z−1
x y−2 z−3
A. = =
.
B. =
=
.
1 1
1
2
3
−1
x−2 y+2 z−3
x−2 y−2 z−3

=
=
.
D.
=
=
.
C.
2
3
4
2
2
2
Câu 124. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1079
1728
1637
23
A.
.
B.
.
C.
.
D.
.
4913
4913

4913
68
log2 240 log2 15
Câu 125. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 1.
B. −8.
C. 4.
D. 3.
2mx + 1
1
Câu 126. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 1.
B. −2.
C. −5.
D. 0.
x2 − 9
Câu 127. Tính lim
x→3 x − 3
A. −3.
B. 6.
C. 3.
D. +∞.
Câu 128. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (0; 1).

C. (−1; 0).
D. (−∞; −1) và (0; +∞).
Câu 129. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
D. log2 a =
.
A. log2 a = loga 2.
B. log2 a = − loga 2.
C. log2 a =
loga 2
log2 a
Câu 130. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Tứ diện đều.
B. Thập nhị diện đều. C. Bát diện đều.
D. Nhị thập diện đều.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
3.

C


5. A
7.
9.

C
B

2.

D

4.

D

6.

D

8.

C

10.

C

11. A

12. A


13. A

14. A

15. A

16.

C

18.

C

17.

D

19.

C

21.
23.

D

B


22.

B

24.

B

25.

20.

C

26. A

27. A

28.

29. A

30. A

31.

D

34.


35. A
37.

B

41.

C

43. A
B

B

38.

C

40.

C

42.

D

44.

D


46.

47. A

48.

49.

D

C
B

50.

51.

C

52.

53.

C

54.

55. A
57.


C

36. A

39. A

45.

D

32.

C

33.

D

C
B
D

56. A
D

58.

59. A

60. A


61. A

62.

63. A

64. A

65.

D

66.

67.

D

68. A
1

D
C
C


69. A
71.


70.
B

73.
75.

D
B

72.

B

74.

B

76.

B

77.

D

78.

79.

D


80.

81. A

C

82.

C
D
B

83.

C

84. A

85.

C

86.

87.

C

88.


C

89.

C

91.

C

B

92.

B

93.

C

94.

B

95.

C

D


96.
C

98.
100.

B

102.
104.

C
D

108. A
110.

D

112.

C

114. A
116.

D

99.


D

101.

D

103. A

B

106.

97.

D

105.

C

107.

C

109.

B

111.


B

113.

D

115.

D

117. A

118.

C

119.

120.

C

121.

122.

C

123. A


124.

C

125.

B

127.

B

126.

D

128.
130.

129.

C
B

2

B
C


C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×