TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. 1.
B. .
C. .
D. 3.
2
2
Câu 2. Tính giới hạn lim
x→2
A. 0.
x2 − 5x + 6
x−2
B. −1.
Câu 3. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 10.
C. 1.
D. 5.
C. 12.
D. 6.
Câu 4. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ√C đến đường thẳng BB0 bằng 2, khoảng
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
. Thể tích khối lăng trụ đã cho bằng
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
3
√
√
2 3
A.
.
B. 1.
C. 3.
D. 2.
3
Câu 5. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
A. 2e + 1.
B. 3.
C.
Câu 6. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = R.
2
.
e
D. 2e.
C. D = (0; +∞).
Câu 7. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. .
B. 2.
C.
.
2
2
Câu 8. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (−∞; 2).
x+1
Câu 9. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. .
B. .
3
4
D. D = R \ {1}.
D. 1.
C. (−∞; 0) và (2; +∞). D. (0; +∞).
C. 1.
D. 3.
Câu 10. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.
B. Câu (II) sai.
C. Khơng có câu nào D. Câu (I) sai.
sai.
√
Câu 11. [12215d] Tìm m để phương trình 4 x+
3
9
A. 0 < m ≤ .
B. 0 ≤ m ≤ .
4
4
1−x2
√
− 4.2 x+
1−x2
C. m ≥ 0.
− 3m + 4 = 0 có nghiệm
3
D. 0 ≤ m ≤ .
4
Trang 1/10 Mã đề 1
x−1 y z+1
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 10x − 7y + 13z + 3 = 0.
B. 2x + y − z = 0.
C. 2x − y + 2z − 1 = 0.
D. −x + 6y + 4z + 5 = 0.
Câu 12. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
Câu 13. Giá trị của giới hạn lim
A. −1.
B. 0.
2−n
bằng
n+1
C. 2.
D. 1.
Câu 14. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng
√M + m
√
B. 7 3.
C. 8 3.
D. 16.
A. 8 2.
Câu 15. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là
√
3
3
√
a 5
a3 6
a 15
3
.
B.
.
C. a 6.
D.
.
A.
3
3
3
!
3n + 2
2
Câu 16. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 3.
B. 2.
C. 4.
D. 5.
Câu 17. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 3.
C. 27.
D. 12.
log(mx)
Câu 18. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m < 0 ∨ m > 4.
C. m ≤ 0.
D. m < 0 ∨ m = 4.
Câu 19. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→b
x→a
x→b
C. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→b
x→a
x→b
D. lim+ f (x) = f (a) và lim+ f (x) = f (b).
Câu 20. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 13 năm.
B. 10 năm.
C. 11 năm.
D. 12 năm.
p
1
ln x
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
Câu 21. Gọi F(x) là một nguyên hàm của hàm y =
x
3
1
1
8
8
A. .
B. .
C. .
D. .
9
3
9
3
π
Câu 22. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2
√
√
3 π6
1 π3
2 π4
A. 1.
B.
e .
C. e .
D.
e .
2
2
2
Câu 23. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng
√
√
√
a b2 + c2
b a2 + c2
abc b2 + c2
c a2 + b2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Trang 2/10 Mã đề 1
Câu 24. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng
√
√
√
√
a 2
a 2
A. a 3.
B.
.
C.
.
D. a 2.
2
3
Câu 25. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≤ 3.
C. m ≥ 3.
D. m < 3.
Câu 26. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 1.
C. 2.
D. 3.
Câu 27. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 9.
B. 7.
C. 5.
D. 0.
1
Câu 28. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 2 < m ≤ 3.
D. 0 ≤ m ≤ 1.
Câu 29. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
B. aαβ = (aα )β .
C. aα bα = (ab)α .
D. aα+β = aα .aβ .
A. β = a β .
a
Câu 30. [1231h] Trong khơng gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y−2 z−3
x y z−1
A. =
=
.
B. = =
.
2
3
−1
1 1
1
x−2 y−2 z−3
x−2 y+2 z−3
=
=
.
D.
=
=
.
C.
2
2
2
2
3
4
Câu 31. Bát diện đều thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 4}.
D. {3; 3}.
Câu 32. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. 7, 2.
C. 0, 8.
D. −7, 2.
mx − 4
Câu 33. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 45.
C. 34.
D. 26.
Câu 34. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. Vô số.
C. 2.
D. 3.
Câu 35. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC√là
√ với đáy và S C = a 3.3 √
√
3
a 6
a 3
a3 3
2a3 6
A.
.
B.
.
C.
.
D.
.
12
4
2
9
1
Câu 36. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e − 1.
B. xy = e + 1.
C. xy0 = −ey − 1.
D. xy0 = −ey + 1.
x−3
Câu 37. [1] Tính lim
bằng?
x→3 x + 3
A. 0.
B. +∞.
C. −∞.
D. 1.
Câu 38. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 48cm3 .
C. 91cm3 .
D. 64cm3 .
Trang 3/10 Mã đề 1
3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
a 2
a
2a
a
B.
.
C. .
D.
.
A. .
4
3
3
3
x+2
Câu 40. Tính lim
bằng?
x→2
x
A. 1.
B. 3.
C. 2.
D. 0.
√
√
4n2 + 1 − n + 2
Câu 41. Tính lim
bằng
2n − 3
3
D. 2.
A. 1.
B. +∞.
C. .
2
Câu 42. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 20.
C. 24.
D. 3, 55.
√
Câu 43. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là
√
√
√
πa3 3
πa3 3
πa3 3
πa3 6
.
B. V =
.
C. V =
.
D. V =
.
A. V =
6
6
3
2
!
1
1
1
+
+ ··· +
Câu 44. Tính lim
1.2 2.3
n(n + 1)
3
A. 0.
B. 2.
C. 1.
D. .
2
Câu 45. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
Câu 39. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.
B. 4.
Câu 46. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 12.
C. 1.
D. 3.
C. 20.
D. 30.
Câu 47. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Có hai.
C. Có một.
D. Khơng có.
Câu 48. Tính lim
A. 2.
2n2 − 1
3n6 + n4
B. 0.
n−1
Câu 49. Tính lim 2
n +2
A. 2.
B. 1.
2
.
3
D. 1.
C. 3.
D. 0.
C.
Câu 50. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. 4.
D. .
4
2
8
Trang 4/10 Mã đề 1
2n − 3
Câu 51. Tính lim 2
bằng
2n + 3n + 1
A. +∞.
B. −∞.
C. 1.
D. 0.
Câu 52. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 2.
C. 3.
D. Vô nghiệm.
Câu 53. Biểu thức nào sau đây khơng
√ 0 có nghĩa
−1
A. (−1) .
B. (− 2) .
C.
√
−1.
−3
D. 0−1 .
Câu 54. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 1.
C. Vô nghiệm.
D. 2.
Câu 55. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB)
√ bằng
√
√
√
a 6
.
B. a 6.
C. 2a 6.
D. a 3.
A.
2
Câu 56. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
B. T = e + .
C. T = e + 3.
D. T = e + 1.
A. T = 4 + .
e
e
Câu 57. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 7.
B. 3.
C. 2.
D. 1.
Câu 58. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 3).
B. A0 (−3; 3; 1).
C. A0 (−3; −3; 3).
D. A0 (−3; −3; −3).
Câu 59. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 18 tháng.
B. 17 tháng.
C. 16 tháng.
D. 15 tháng.
Câu 60. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = 10.
C. P = 21.
D. P = −21.
q
2
Câu 61. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 4].
C. m ∈ [0; 1].
D. m ∈ [0; 2].
Câu 62. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Hai khối chóp tứ giác.
D. Hai khối chóp tam giác.
Câu 63. [1] Đạo hàm của làm số y = log x là
1
1
A. y0 =
.
B.
.
x ln 10
10 ln x
Câu 64.
! nào sau đây sai?
Z Mệnh đề
1
C. y0 = .
x
D. y0 =
ln 10
.
x
0
A.
f (x)dx = f (x).
B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
D. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
Trang 5/10 Mã đề 1
Câu 65. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng
√
√
a 2
a 2
.
B. a 2.
C. 2a 2.
D.
.
A.
2
4
Câu 66. Giá trị của lim (3x2 − 2x + 1)
A. +∞.
x→1
B. 1.
C. 2.
x
D. 3.
!
!
4
1
2
2016
Câu 67. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 1008.
B. T =
.
C. T = 2016.
D. T = 2017.
2017
Câu 68. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
!
un
= −∞.
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= 0.
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
vn
!
Câu 69. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −2.
B. x = 0.
C. x = −8.
D. x = −5.
2
3
7n − 2n + 1
Câu 70. Tính lim 3
3n + 2n2 + 1
7
2
A. .
B. 0.
C. 1.
D. - .
3
3
x−3 x−2
x−3
x−2
Câu 71. [3-12212d] Số nghiệm của phương trình 2 .3 − 2.2 − 3.3 + 6 = 0 là
A. 1.
B. Vô nghiệm.
C. 2.
D. 3.
2mx + 1
1
Câu 72. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 1.
B. 0.
C. −5.
D. −2.
Câu 73. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 27 lần.
5
Câu 74. Tính lim
n+3
A. 1.
B. 3.
C. 2.
D. 0.
Câu 75. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 6
a 6
a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
48
8
24
24
Câu 76. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.424.000.
B. 102.016.000.
C. 102.423.000.
D. 102.016.000.
Câu 77. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C. Khối lập phương.
D. Khối bát diện đều.
Trang 6/10 Mã đề 1
Câu 78. Tính thể tích khối lập phương biết tổng diện tích √
tất cả các mặt bằng 18.
D. 27.
A. 8.
B. 9.
C. 3 3.
Câu 79. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 24.
Câu 80. [2] Tổng các nghiệm của phương trình 3
A. 2 − log2 3.
B. 1 − log2 3.
C. 4.
x−1
x2
D. 144.
.2 = 8.4 là
C. 3 − log2 3.
x−2
D. 1 − log3 2.
Câu 81. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
18
15
9
6
Câu 82. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ đứng là hình lăng trụ đều.
Câu 83. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. −2 ≤ m ≤ 2.
C. m ≤ 3.
D. −3 ≤ m ≤ 3.
Câu 84. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
12
36
6
24
Câu 85. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 4.
B. 11.
C. 10.
D. 12.
Câu 86. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 160 cm2 .
1 − 2n
bằng?
Câu 87. [1] Tính lim
3n + 1
2
1
2
A. 1.
B. .
C. − .
D. .
3
3
3
x
Câu 88. [1] Đạo hàm của hàm số y = 2 là
1
1
A. y0 = x
.
B. y0 = 2 x . ln 2.
C. y0 =
.
D. y0 = 2 x . ln x.
2 . ln x
ln 2
1
Câu 89. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 4.
C. 1.
D. 3.
x+2
Câu 90. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 1.
B. 3.
C. Vô số.
D. 2.
Câu 91. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là
√
√
a3 3
a3 3
2a3 3
3
A.
.
B.
.
C. a 3.
D.
.
6
3
3
Trang 7/10 Mã đề 1
Câu 92. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. Không tồn tại.
C. −7.
D. −5.
Câu 93. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = ln x − 1.
D. y0 = 1 + ln x.
C. y0 = 1 − ln x.
Câu 94. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −1.
C. m = −3.
D. m = −2.
Câu 95. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a + b + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. .
B. 9.
C. .
D. 6.
2
2
Câu 96. Khối đa diện đều loại {3; 3} có số mặt
A. 3.
B. 2.
C. 4.
D. 5.
2
2
Câu 97. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m < 0.
C. m > 0.
D. m , 0.
Câu 98. Phát biểu nào sau đây là sai?
A. lim un = c (un = c là hằng số).
B. lim qn = 0 (|q| > 1).
1
1
D. lim = 0.
C. lim k = 0.
n
n
3
Câu 99. [2D1-3] Tìm giá trị của tham số m để f (x) = −x + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. − < m < 0.
B. m ≥ 0.
C. m > − .
D. m ≤ 0.
4
4
1
Câu 100. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. m = 4.
B. m = −3, m = 4.
C. −3 ≤ m ≤ 4.
D. m = −3.
2
Câu 101. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 4.
B. 3.
C. 2.
Câu 102. Khối đa diện đều loại {4; 3} có số mặt
A. 6.
B. 10.
C. 8.
√
Câu 103. Xác định phần ảo của số phức z = ( 2 + 3i)2
√
A. −7.
B. 7.
C. −6 2.
D. 5.
D. 12.
√
D. 6 2.
Câu 104. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. F(x) = G(x) trên khoảng (a; b).
Câu 105. [1] Tập
! xác định của hàm số! y = log3 (2x + 1) là
!
1
1
1
A. − ; +∞ .
B.
; +∞ .
C. −∞; − .
2
2
2
!
1
D. −∞; .
2
Câu 106. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của hình chóp S .ABCD với√mặt phẳng (AIC) có diện√tích là
√
2
a 5
11a2
a2 2
a2 7
A.
.
B.
.
C.
.
D.
.
16
32
4
8
Trang 8/10 Mã đề 1
!x
1
Câu 107. [2] Tổng các nghiệm của phương trình 3 = 2 +
là
9
A. log2 3.
B. − log2 3.
C. − log3 2.
1−x
D. 1 − log2 3.
Câu 108. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
a3 3
4a3 3
8a3 3
8a3 3
A.
.
B.
.
C.
.
D.
.
9
9
3
9
Câu 109. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − 2 .
B. − .
C. −e.
D. − .
e
e
2e
x−1
Câu 110. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
AB có độ dài bằng
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng √
√
B. 2.
C. 6.
D. 2 3.
A. 2 2.
Câu 111. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 2.
C. 0.
D. 1.
!
x+1
Câu 112. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
4035
2017
A.
.
B.
.
C.
.
D. 2017.
2017
2018
2018
x+1
Câu 113. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
C. .
D. .
A. 1.
B. .
2
6
3
Câu 114. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tam giác và một hình chóp tứ giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Hai hình chóp tam giác.
D. Hai hình chóp tứ giác.
!2x−1
!2−x
3
3
≤
là
Câu 115. Tập các số x thỏa mãn
5
5
A. [3; +∞).
B. (+∞; −∞).
C. [1; +∞).
D. (−∞; 1].
Câu 116. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có vơ số.
C. Có hai.
D. Có một.
Câu 117. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh của khối chóp bằng số mặt của khối chóp.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Câu 118. [1-c] Giá trị của biểu thức
A. 2.
B. −2.
log7 16
log7 15 − log7
15
30
bằng
C. 4.
D. −4.
d = 300 .
Câu 119. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V3 √của khối lăng trụ đã cho.
3
√
3a 3
a 3
A. V =
.
B. V =
.
C. V = 6a3 .
D. V = 3a3 3.
2
2
Trang 9/10 Mã đề 1
Câu 120. [4-1245d] Trong tất cả các số phức z thỏa mãn√hệ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
D. 2.
A. 2.
B. 1.
C. 10.
Câu 121. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 122. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
A. 34.
B. 68.
C.
.
D. 5.
17
Câu 123.
√ Thể tích của tứ diện đều
√cạnh bằng a
√
√
a3 2
a3 2
a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
6
2
4
12
Câu 124. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (2; 1; 6).
C. ~u = (3; 4; −4).
D. ~u = (1; 0; 2).
√
Câu 125. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
a3 6
a 6
a3 2
a3 6
A.
.
B.
.
C.
.
D.
.
6
36
6
18
Câu 126. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là 3, phần ảo là −4.
Câu 127. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
√
√
√
√
20 3
14 3
B. 6 3.
C.
.
D.
.
A. 8 3.
3
3
Câu 128. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. n lần.
C. n3 lần.
D. 3n3 lần.
Câu 129. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ S .ABCD là
√ phẳng vng góc với (ABCD). Thể tích khối chóp
3
√
2
a3 3
a3 3
a
.
B.
.
C. a3 3.
D.
.
A.
2
4
2
1 − n2
Câu 130. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. .
B. − .
C. 0.
D. .
2
2
3
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
C
2.
B
4.
3. A
D
5.
B
6.
7.
B
8.
C
9.
B
10.
C
D
11.
12. A
14.
13. A
15.
17.
B
D
16.
B
19. A
21.
D
C
23. A
18.
D
20.
D
22.
D
24.
C
C
B
26.
C
27. A
28.
C
29. A
30.
25.
31.
C
32.
33.
C
34.
35. A
36. A
37. A
38.
39.
D
D
C
D
40.
41. A
C
42. A
43.
C
45.
44.
D
47. A
C
46.
B
48.
B
49.
D
50. A
51.
D
52. A
53.
D
54.
55.
B
B
56.
B
57.
C
58. A
59.
C
60.
C
D
61. A
62.
B
63. A
64.
B
65. A
66.
67. A
68. A
1
C
69.
C
70.
71.
C
72.
D
73.
B
D
74.
C
75.
D
76. A
77.
D
78.
79.
D
80. A
C
82. A
83.
D
84. A
85.
D
D
86.
88.
B
90.
92.
D
D
100.
B
B
D
C
D
97.
99.
C
101. A
103.
102. A
104.
C
95.
C
B
89.
93.
94.
98.
C
91.
B
96.
87.
B
D
105. A
106.
D
107.
108.
D
109.
110.
D
111.
C
B
D
112.
C
113.
C
114.
C
115.
C
116.
C
117. A
118.
120.
D
119. A
B
122.
121. A
C
124.
D
123.
D
125.
D
126.
C
127.
128.
C
129. A
130.
B
2
B