Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (137)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (150.93 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
môđun z.




5 13
A. 2 13.
B. 26.
C.
.
D. 2.
13
Câu 2. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −2.
B. x = −8.
C. x = 0.
D. x = −5.
Câu 3. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Năm mặt.
C. Hai mặt.


D. Ba mặt.
!
1
1
1
Câu 4. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
C. 0.
D. 2.
A. 1.
B. .
2
Câu 5. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 20.
B. 15, 36.
C. 3, 55.
D. 24.
Câu 6. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 6.

C. 12.

D. 10.

!
3n + 2
2
Câu 7. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử của
n+2
S bằng
A. 5.
B. 4.
C. 2.
D. 3.
1
Câu 8. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 0 < m ≤ 1.
C. 2 < m ≤ 3.
D. 2 ≤ m ≤ 3.
2
ln x
m
Câu 9. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 135.
C. S = 32.
D. S = 24.

Câu 10. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. m ≥ 3.
C. −3 ≤ m ≤ 3.
D. −2 ≤ m ≤ 2.
Câu 11. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.
Câu 12. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 13. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
A. −∞; .
B. −∞; − .
C. − ; +∞ .
2
2
2

!
1
D.
; +∞ .
2


Câu 14. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là

4a3 3
a3
a3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
6
3
Trang 1/10 Mã đề 1


Câu 15. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Cả hai đều sai.

C. Chỉ có (II) đúng.


D. Chỉ có (I) đúng.

Câu 16. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 48cm3 .
B. 64cm3 .
C. 91cm3 .
D. 84cm3 .
Câu 17. [1] Đạo hàm của hàm số y = 2 x là
A. y0 = 2 x . ln 2.

B. y0 = 2 x . ln x.

C. y0 =

1
.
ln 2

D. y0 =

1
2 x . ln

x

.

Câu 18. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu

không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất khơng thay đổi?
A. 102.424.000.
B. 102.016.000.
C. 102.016.000.
D. 102.423.000.
Câu 19. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. Không tồn tại.
B. −3.
C. −7.

Câu 20. Thể tích của khối lập phương có cạnh bằng a 2 √

2a3 2
B. V = 2a3 .
C.
.
A. V = a3 2.
3

D. −5.

D. 2a3 2.

Câu 21. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 8 mặt.
C. 10 mặt.
D. 4 mặt.



Câu 22. Phần thực và √
phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt √l

A. Phần thực là 1√− 2, phần ảo là −√ 3.
B. Phần thực là √2, phần ảo là 1 − √
3.
D. Phần thực là 2 − 1, phần ảo là − 3.
C. Phần thực là 2 − 1, phần ảo là 3.

Câu 23. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3
a 6
a3 6
a3 6
a 2
.
B.
.
C.
.
D.
.

A.
6
36
18
6
Câu 24. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó không rút tiền ra?
A. 12 năm.
B. 14 năm.
C. 11 năm.
D. 10 năm.
x−2 x−1
x
x+1
Câu 25. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−∞; −3].
C. [−3; +∞).
D. (−3; +∞).

Câu 26. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Trang 2/10 Mã đề 1


Câu 27. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng

2
.
e
Câu 28. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (−1; 0).
C. (−∞; 0) và (1; +∞). D. (0; 1).
A. 3.

B. 2e + 1.

C. 2e.

D.

1

Câu 29. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = (−∞; 1).
C. D = R.


D. D = R \ {1}.

x
Câu 30. Tính diện tích hình phẳng
√ giới hạn bởi các đường y = xe , y = 0, x = 1.
1
3
3
A. .
B.
.
C. .
D. 1.
2
2
2
Câu 31. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
B. f (x) liên tục trên K.
C. f (x) có giá trị lớn nhất trên K.
D. f (x) xác định trên K.

Câu 32. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng
√M + m

B. 7 3.
C. 8 3.

D. 16.
A. 8 2.
Câu 33. [2]√Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2
B. m = ± 3.
C. m = ±1.
D. m = ±3.
A. m = ± 2.
Câu 34. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. Vơ nghiệm.
C. 1.
D. 2.
Câu 35. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng BD và S C bằng




a 6
a 6
a 6
A. a 6.
B.
.
C.
.
D.
.
2
3

6

Câu 36. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5
5
A. (1; 2).
B.
;3 .
C. 2; .
D. [3; 4).
2
2
d = 300 .
Câu 37. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V của khối lăng trụ đã cho.

3

a 3
3a3 3
3
3
.
B. V = 3a 3.
C. V = 6a .

D. V =
.
A. V =
2
2
Câu 38. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 9.
B. 7.
C. 0.
D. 5.
Câu 39. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −15.
C. −5.
D. −9.
Câu 40.
đề nào sai? Z
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh Z
A.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
B.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
Z
Z

Z
C.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
D.
f (x)g(x)dx =
f (x)dx g(x)dx.
 π
x
Câu 41. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2


2 π4
1 π3
3 π6
A. 1.
B.
e .
C. e .
D.
e .
2
2
2
Trang 3/10 Mã đề 1


Câu 43.
A. 34.

Câu 44.
A. 3.



a = 2 thì log6 a bằng
B. 108.
C. 6.
D. 4.
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Tìm m để hàm số y =
x+m
B. 26.
C. 67.
D. 45.
n−1
Tính lim 2
n +2
B. 1.
C. 2.
D. 0.

Câu 42. [1] Biết log6
A. 36.

Câu 45. Phát biểu nào sau đây là sai?
1
A. lim k = 0.
n

C. lim un = c (un = c là hằng số).

1
= 0.
n
D. lim qn = 0 (|q| > 1).

B. lim

Câu 46. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 2 nghiệm.
B. 1 nghiệm.
C. Vô nghiệm.

D. 3 nghiệm.

Câu 47. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số mặt của khối chóp bằng 2n+1.
C. Số cạnh của khối chóp bằng 2n.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
Câu 48. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = −21.
C. P = 21.
D. P = 10.
Câu 49. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Hai khối chóp tứ giác.
C. Hai khối chóp tam giác.

D. Một khối chóp tam giác, một khối chóp ngữ giác.
[ = 60◦ , S O
Câu 50. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ BC) bằng
√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S

2a 57
a 57
a 57
.
B.
.
C.
.
D. a 57.
A.
19
19
17
Câu 51. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng


a 2
a 2
D. a 2.
.

B.
.
C. 2a 2.
A.
2
4
Câu 52. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; −8)(.
B. A(4; −8).
C. A(4; 8).
D. A(−4; 8).
x−3
Câu 53. [1] Tính lim
bằng?
x→3 x + 3
A. 1.
B. +∞.
C. 0.
D. −∞.
Câu 54. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x)g(x)] = ab.
B. lim [ f (x) − g(x)] = a − b.
x→+∞
x→+∞
f (x) a
C. lim [ f (x) + g(x)] = a + b.
D. lim
= .

x→+∞
x→+∞ g(x)
b
Câu 55. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. 3.
C. 2.
D. Vô số.
Trang 4/10 Mã đề 1


π
Câu 56. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


C. T = 3 3 + 1.
D. T = 2.
A. T = 4.
B. T = 2 3.
Câu 57. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.

B. a3 .
C.
.
D.
.
A.
6
12
24
0 0 0 0
0
Câu 58.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 3
a 6
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
3
7
2




x=t




Câu 59. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
A. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2

2
C. (x − 3) + (y − 1) + (z − 3) = .
D. (x + 3) + (y + 1) + (z + 3) = .
4
4



x = 1 + 3t




Câu 60. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là












x
=
−1
+
2t
x
=
1
+
3t
x
=
−1
+
2t
x = 1 + 7t

















A. 
C. 
.
y = −10 + 11t . B. 
y = 1 + 4t .
y = −10 + 11t . D. 
y=1+t
















z = 6 − 5t

z = 1 − 5t
z = −6 − 5t
z = 1 + 5t
Câu 61. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Khơng có.
C. Có một.
D. Có hai.
Câu 62. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = R \ {1}.

C. D = (0; +∞).

D. D = R.


Câu 63. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √


a3 3
a3 3
a3
3
A. a 3.
B.
.
C.

.
D.
.
3
12
4
Câu 64. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m > .
C. m < .
D. m ≥ .
4
4
4
4
−2x2
Câu 65. [2-c] Giá trị lớn nhất của hàm số y = xe
trên đoạn [1; 2] là
1
1
2
1
A. 3 .
B. √ .
C. 3 .
D. 2 .

2e
e
e
2 e
x+2
Câu 66. Tính lim
bằng?
x→2
x
A. 0.
B. 3.
C. 1.
D. 2.
Trang 5/10 Mã đề 1


Câu 67. Tính lim
x→5

x2 − 12x + 35
25 − 5x
B. +∞.

2
2
C. − .
D. .
5
5
2

Câu 68. [1] Tập nghiệm của phương trình log2 (x − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {5; 2}.
C. {5}.
D. {2}.
2n + 1
Câu 69. Tính giới hạn lim
3n + 2
3
1
2
C. .
D. .
A. 0.
B. .
3
2
2
q
2
Câu 70. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 1].
C. m ∈ [0; 4].
D. m ∈ [0; 2].
A. −∞.


Câu 71. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 7 mặt.

D. 8 mặt.

Câu 72. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối

√ chóp S .ABCD là

a3 3
a3 2
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
48
16
24
48
x+3
nghịch biến trên khoảng

Câu 73. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. Vô số.
B. 1.
C. 3.
D. 2.
d = 120◦ .
Câu 74. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
B. 4a.
C. 3a.
D. 2a.
A.
2
Câu 75. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 10.
C. 6.
D. 8.
1 − 2n
Câu 76. [1] Tính lim
bằng?
3n + 1
1
2
2
A. .

B. − .
C. 1.
D. .
3
3
3
Câu 77. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 3.
C. 4.
D. 2.
Câu 78. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Bốn cạnh.
C. Hai cạnh.

D. Năm cạnh.

Câu 79. Khối lập phương thuộc loại
A. {4; 3}.
B. {5; 3}.

D. {3; 3}.

C. {3; 4}.

Câu 80. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
A. −2.
B. 2.

C. − .
2
Câu 81. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 3}.
C. {4; 3}.
Câu 82. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
4e + 2
4e + 2
4 − 2e

D.

1
.
2

D. {3; 4}.
D. m =

1 + 2e

.
4 − 2e
Trang 6/10 Mã đề 1


Câu 83.√Thể tích của tứ diện đều √
cạnh bằng a
a3 2
a3 2
A.
.
B.
.
2
4


a3 2
C.
.
12


a3 2
D.
.
6

3


Câu 84. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e2 .
C. e.

Câu 85. √Xác định phần ảo của số phức z = ( 2 + 3i)2
A. −6 2.
B. 7.
C. −7.

D. e5 .

D. 6 2.

Câu 86. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
C. Khối 20 mặt đều.
D. Khối 12 mặt đều.
!
5 − 12x
Câu 87. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 1.
B. 3.
C. 2.
D. Vô nghiệm.
Câu 88. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. −2e2 .

C. −e2 .
D. 2e4 .
Câu 89. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. R.
B. (2; +∞).
C. (0; 2).

D. (−∞; 1).

Câu 90. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 3 mặt.
C. 6 mặt.

D. 4 mặt.

Câu 91. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 5%.
C. 0, 6%.
D. 0, 8%.
Câu 92. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 4.
C. 0, 2.
D. 0, 3.
Câu 93. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng

A. 2.
B. 1.
C. 7.
D. 3.
! x3 −3mx2 +m
1
Câu 94. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ (0; +∞).
B. m ∈ R.
C. m , 0.
D. m = 0.
Câu 95.! Dãy số nào sau đây có giới
!n hạn là 0?
n
1
4
A.
.
B.
.
3
e

!n
5
C. − .
3


Câu 96. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (2; 2).
C. (−1; −7).
!
x+1
Câu 97. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) +
x
4035
2016
2017
A.
.
B.
.
C.
.
2018
2018
2017
x−2
Câu 98. Tính lim
x→+∞ x + 3
A. 1.
B. −3.
C. 2.

!n

5
D.
.
3
D. (1; −3).
f 0 (2) + · · · + f 0 (2017)
D. 2017.

2
D. − .
3
Trang 7/10 Mã đề 1


Câu 99. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn !
un
B. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn

x+1
bằng
x→+∞ 4x + 3
1
1
C. .
D. 3.
A. 1.
B. .
3
4
Câu 101. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e2 − 2; m = e−2 + 2.
−2
C. M = e − 2; m = 1.
D. M = e−2 + 1; m = 1.
Câu 100. Tính lim

Câu 102. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình chóp.
C. Hình lăng trụ.

D. Hình tam giác.

Câu 103. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vuông cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng


√ góc với đáy, S C = a 3. Thể tích khối chóp S 3.ABCD

3
a 3
a 3
a3
A.
.
B. a3 .
C.
.
D.
.
3
9
3
Câu 104. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số đồng biến trên khoảng (0; 2).
Câu 105. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
n2 − 3n
A. un =
.
B.
u
=
.

n
(n + 1)2
n2

C. un =

1 − 2n
.
5n + n2

D. un =

n2 − 2
.
5n − 3n2

Câu 106. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. e2016 .
C. 1.
D. 22016 .
Câu 107. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Câu 108. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 10.


C. 30.

D. 20.

Câu 109. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vuông góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (1; 0; 2).
C. ~u = (2; 1; 6).
D. ~u = (2; 2; −1).
Câu 110. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều.

C. Khối tứ diện đều.

D. Khối 12 mặt đều.

Câu 111. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.

B. 11 cạnh.

C. 10 cạnh.

D. 12 cạnh.
Trang 8/10 Mã đề 1


Câu 112. √
Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z −√2 − 2i|. Tính |z|.
B. |z| = 10.
C. |z| = 17.
D. |z| = 17.
A. |z| = 10.
Câu 113. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. 3.
C. 0.
D. −3.
Câu 114. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
!
1
C. Hàm số nghịch biến trên khoảng ; 1 .
3

!
1
B. Hàm số nghịch biến trên khoảng −∞; .
! 3

1
D. Hàm số đồng biến trên khoảng ; 1 .
3

Câu 115. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Z
u0 (x)
dx = log |u(x)| + C.
B.
u(x)
C. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Câu 116. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 24.
C. 2.
!4x
!2−x
3
2


Câu 117. Tập các số x thỏa mãn
3 #
2
"
!
#

2
2
2
A. −∞; .
B. −∞; .
C. − ; +∞ .
3
5
3


Câu 118. Tìm giá trị lớn nhất của
√ hàm số y = x + 3 + √6 − x
C. 3 2.
A. 3.
B. 2 3.

D. 144.

"

!
2
D.
; +∞ .
5
D. 2 +


3.


Câu 119. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 12 m.
C. 8 m.
D. 24 m.
Câu 120. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0)
lần lượt là hình chiếu của B, C lên các !cạnh AC, AB. Tọa độ hình!chiếu của A lên BC là !
7
5
8
A. (2; 0; 0).
B.
; 0; 0 .
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
Câu 121. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. [6, 5; +∞).
C. (4; 6, 5].

D. (4; +∞).

Câu 122. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động

3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 1587 m.
B. 25 m.
C. 27 m.
D. 387 m.
Câu 123. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 3.
B. +∞.

C. 1.

D. 2.

Câu 124. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 12.

C. 10.

D. 6.

Câu 125. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.
Trang 9/10 Mã đề 1



B. Một hình chóp tam giác và một hình chóp tứ giác.
C. Hai hình chóp tứ giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 126. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
Câu 127. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Trục thực.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Đường phân giác góc phần tư thứ nhất.
x2 − 5x + 6
Câu 128. Tính giới hạn lim
x→2
x−2
A. 1.
B. 5.
x+1
Câu 129. Tính lim
bằng
x→−∞ 6x − 2
1
1
A. .
B. .
2
3
Câu 130. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.


C. −1.

D. 0.

C. 1.

D.

C. Khối 20 mặt đều.

D. Khối bát diện đều.

1
.
6

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

C

2.

D

3.

B

4. A

5.

B

6.

7.

B

8.

C

10.

C

C

9.
11.


D

12.

13.

C

14. A

15.

C

16.

B

B
B

17. A

18. A

19. A

20.


D

21. A

22.

D

C

23.
25.

C

24.
26.

B

27. A

28.

B

29. A

30.


D

32.

D

34.

D

31.

B

B

33.

C

35.

D

36.

37.

D


38. A

39. A
41.

B

43. A
45.

D

47.

40.

D

42.

D

44.

D

46. A

C


48.

49. A

50. A

51. A

52.

53.

C

54.

55.

C

56. A

57.

C

58.

59.


B
C
D
B

60. A

B

62.

61. A
63.

B

D

64. A

B

65.

D

66.

67.


D

68.
1

D
C


69.

70. A

B

71. A

72. A

73.

74. A

C

75. A

76.

77.


78. A

C

79. A

80. A

81. A

82. A
C

83.

D

85.
87. A

84.

D

86.

D

88.

C

89.

D

93. A

94.

D

95. A

96. A

97. A

98. A

99. A

100.

101.

C

102.


D

103.

104.

D

105.

106. A

107.

108. A

109.

110. A

111.

112. A

113.

114.

115.


C

116.

D

118.

117.

D

122.

C
D
C
D
B
C
D
B
C

119. A

C

120.


C

91. A

92.

121.

C

123.

C

124. A
126.

B

D

125. A
B

127.

128.

C


130.

C

129.

2

C
D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×