Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (137)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (157.53 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
C. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
D.
dx = log |u(x)| + C.
u(x)
Câu 2. √
Thể tích của tứ diện đều cạnh
√ bằng a


a3 2
a3 2
a3 2
a3 2
.
B.
.


C.
.
D.
.
A.
2
4
6
12
Câu 3. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −7.
B. −4.
C.
.
D. −2.
27
Câu 4. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 3.
C. 12.
D. 27.
Câu 5. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −2 ≤ m ≤ 2.
B. m ≥ 3.
C. m ≤ 3.
D. −3 ≤ m ≤ 3.
Câu 6. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả

vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 15 tháng.
B. 16 tháng.
C. 18 tháng.
D. 17 tháng.
Câu 7. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hồn nợ ở mỗi tháng là như nhau và ơng A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.
B. 2, 25 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 20 triệu đồng.
Câu 8. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m > .
C. m ≤ .
D. m < .
4
4
4
4
a
1
Câu 9. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +

, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 1.
B. 4.
C. 7.
D. 2.
3a
Câu 10. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

2a
a
a 2
a
A.
.
B. .
C.
.
D. .
3
3
3
4
x+2
Câu 11. Tính lim
bằng?

x→2
x
A. 0.
B. 3.
C. 2.
D. 1.
Trang 1/10 Mã đề 1


Câu 12. Tứ diện đều thuộc loại
A. {3; 3}.
B. {3; 4}.

C. {5; 3}.

D. {4; 3}.

π
Câu 13. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

A. T = 2 3.
B. T = 3 3 + 1.
C. T = 2.
D. T = 4.
Câu 14. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Bát diện đều.

B. Thập nhị diện đều. C. Nhị thập diện đều.

D. Tứ diện đều.

Câu 15. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x−2 y+2 z−3
x y−2 z−3
A.
=
=
.
B. =
=
.
2
2

2
2
3
−1
x−2 y−2 z−3
x y z−1
C.
=
=
.
D. = =
.
2
3
4
1 1
1
Câu 16. Khối đa diện đều loại {3; 4} có số đỉnh
A. 6.
B. 8.
C. 10.
D. 4.
Câu 17. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 4 − 2 ln 2.
B. −2 + 2 ln 2.
C. 1.

D. e.

Câu 18. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

A. Ba mặt.
B. Hai mặt.
C. Một mặt.

D. Bốn mặt.

Câu 19. [2] Tổng các nghiệm của phương trình 3
A. 3.
B. 5.

x2 −4x+5

= 9 là
C. 2.

D. 4.

Câu 20. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC theo a


a3 15
a3
a3 15
a3 5
A.
.
B.
.
C.

.
D.
.
5
3
25
25
!2x−1
!2−x
3
3
Câu 21. Tập các số x thỏa mãn


5
5
A. [1; +∞).
B. [3; +∞).
C. (−∞; 1].
D. (+∞; −∞).
Câu 22. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. − < m < 0.
B. m ≥ 0.
C. m ≤ 0.
D. m > − .
4
4

!4x
!2−x
2
3
Câu 23. Tập các số x thỏa mãn


3 # 2
"
!
#
"
!
2
2
2
2
A. − ; +∞ .
B. −∞; .
C. −∞; .
D.
; +∞ .
3
5
3
5
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 24. Cho hình chóp S .ABC có BAC
Thể tích khối chóp S .ABC là





a3 3
a3 3
a3 2
2
A. 2a 2.
B.
.
C.
.
D.
.
24
12
24
1 − n2
Câu 25. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. − .
B. .
C. .
D. 0.
2

2
3
Trang 2/10 Mã đề 1


Câu 26. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim− f (x) = f (a) và lim− f (x) = f (b).

Câu 27. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 8.

x→a

x→b

x→a

x→b


D. lim+ f (x) = f (a) và lim+ f (x) = f (b).

C. 4.

D. 6.

Câu 28. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
3. Thể
vng góc
với
đáy

S
C
=
a

√ tích khối chóp S .ABC
√là

3
3
3
a 6
2a 6
a 3
a3 3
A.

.
B.
.
C.
.
D.
.
12
9
2
4
Câu 29. Bát diện đều thuộc loại
A. {3; 4}.
B. {3; 3}.
C. {4; 3}.
D. {5; 3}.
2

Câu 30. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.
B. 2 − log2 3.
C. 3 − log2 3.

D. 1 − log3 2.

Câu 31. Dãy số nào có giới hạn bằng 0?
n3 − 3n
2
A. un = n − 4n.
B. un =

.
n+1

!n
6
D. un =
.
5

!n
−2
C. un =
.
3

!
5 − 12x
Câu 32. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 1.
B. Vơ nghiệm.
C. 2.
D. 3.
Câu 33. Trong các khẳng định sau, khẳng định nào sai?√
A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C. Cả ba đáp án trên.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
Câu 34. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy

một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là

10a3 3
3
3
3
.
A. 20a .
B. 40a .
C. 10a .
D.
3
Câu 35. [4-1246d] Trong tất cả√các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
A. 2.
B. 5.
C. 3.
D. 1.
Câu 36. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.

Câu 37. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 62.
C. Vơ số.
D. 63.
log(mx)

= 2 có nghiệm thực duy nhất
Câu 38. [3-1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0 ∨ m = 4.
B. m ≤ 0.
C. m < 0 ∨ m > 4.
D. m < 0.
Câu 39. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x)g(x)] = ab.
B. lim [ f (x) + g(x)] = a + b.
x→+∞

x→+∞

Trang 3/10 Mã đề 1


C. lim

x→+∞

f (x) a
= .
g(x) b

D. lim [ f (x) − g(x)] = a − b.
x→+∞


Câu 40. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
.
D. 34.
B. 68.
C.
A. 5.
17
Câu 41. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. 8π.
C. 16π.
D. V = 4π.
Câu 42. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai ngun hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.

B. Khơng có câu nào C. Câu (III) sai.
D. Câu (II) sai.
sai.
Câu 43. Hàm số f có nguyên hàm trên K nếu

A. f (x) xác định trên K.
B. f (x) có giá trị nhỏ nhất trên K.
C. f (x) có giá trị lớn nhất trên K.
D. f (x) liên tục trên K.
Câu 44. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).

x2 + 3x + 5
Câu 45. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. 1.
B. .
C. 0.
D. − .
4
4
Câu 46. Dãy số nào sau đây có giới hạn khác 0?
1
1
sin n
n+1
B. √ .
.
D.

.
A. .
C.
n
n
n
n

Câu 47. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. −3.
B. .
C. 3.
D. − .
3
3
Câu 48. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 12.
C. 6.
D. 10.
1
Câu 49. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 3.
B. 2.
C. 1.
D. 4.

1 − 2n
Câu 50. [1] Tính lim
bằng?
3n + 1
2
2
1
A. .
B. − .
C. 1.
D. .
3
3
3
x−3 x−2
x−3
x−2
Câu 51. [3-12212d] Số nghiệm của phương trình 2 .3 − 2.2 − 3.3 + 6 = 0 là
A. 1.
B. 2.
C. Vô nghiệm.
D. 3.
Trang 4/10 Mã đề 1


Câu 52. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 1; m = 1.
C. M = e−2 + 2; m = 1.
D. M = e2 − 2; m = e−2 + 2.

Câu 53. Khối lập phương thuộc loại
A. {4; 3}.
B. {5; 3}.

C. {3; 3}.

D. {3; 4}.

Câu 54. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
23
13
9
5
B. −
.
C.
.
D.
.
A. − .
16
100
100
25
Câu 55. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


3

3
3
a
a
3
a
3
A. a3 .
B.
.
C.
.
D.
.
3
2
6
Câu 56. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.
B. 8.

C. 20.

D. 12.

Câu 57. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2

A. 2.


B. 6.

C. 4.

3

Z

6
3x + 1

. Tính

1

f (x)dx.
0

D. −1.

Câu 58. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 2
a 6
a3 3

a3 3
A.
.
B.
.
C.
.
D.
.
16
48
48
24
Câu 59. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 8 mặt.
C. 9 mặt.

D. 6 mặt.

Câu 60. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối 20 mặt đều.

D. Khối tứ diện đều.

C. Khối bát diện đều.

Câu 61. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:

A. 72cm3 .
B. 27cm3 .
C. 64cm3 .
D. 46cm3 .
Câu 62. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,

√ N, P bằng


14 3
20 3
C.
A.
.
B. 8 3.
.
D. 6 3.
3
3
!
1
1
1
Câu 63. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3

5
A. .
B. 2.
C. +∞.
D. .
2
2
Câu 64. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 5.
C. 0, 2.
D. 0, 4.
p
ln x
1
Câu 65. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
1
8
A. .
B. .
C. .
D. .
9
9

3
3
Trang 5/10 Mã đề 1


Câu 66. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
d = 30◦ , biết S BC là tam giác đều
Câu 67. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
16
26

9
13
Câu 68. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√ hình chóp S .ABCD với mặt

2
2
2
a 7
a 5
11a
a2 2
A.
.
B.
.
C.
.
D.
.
8
16
32
4



Câu 69. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt √l

A. Phần thực là √2 − 1, phần ảo là √3.
B. Phần thực là 2 −√1, phần ảo là − √3.
C. Phần thực là 2, phần ảo là 1 − 3.
D. Phần thực là 1 − 2, phần ảo là − 3.
Câu 70. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 6.

C. 10.

D. 8.

Câu 71. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
.
C.
.
D. 2a 2.
A. a 2.
B.
4

2
Câu 72. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình chóp.
C. Hình tam giác.
D. Hình lập phương.
2
Câu 73. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
C. m = ± 2.
D. m = ±3.
A. m = ±1.
B. m = ± 3.

Câu 74. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (−∞; +∞).
B. [1; 2].
C. [−1; 2).

D. (1; 2).

Câu 75. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 20.
C. 12.
D. 30.
x−1
Câu 76. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2

tam giác đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB

√ có độ dài bằng
C. 2 3.
D. 2 2.
A. 2.
B. 6.
Câu 77. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m > 3.
C. m ≥ 3.
D. m ≤ 3.
Câu 78. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
A. 3.

B. 2e + 1.

C. 2e.

Câu 79. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. +∞.

B. 0.

C. 1.

D.

2

.
e

un
bằng
vn
D. −∞.

Câu 80. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. Vô số.
C. 3.
D. 2.
Trang 6/10 Mã đề 1


Câu 81. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Một hình chóp tam giác và một hình chóp tứ giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Hai hình chóp tam giác.
Câu 82. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
2a
8a
5a

.
B. .
C.
.
D.
.
A.
9
9
9
9
Câu 83. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
Thể tích khối chóp S .ABCD là

√ phẳng vng góc với 3(ABCD).
3
3

a 3
a 3
a 2
A.
.
B.
.
C.
.
D. a3 3.
2

4
2
1
Câu 84. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 0 ≤ m ≤ 1.
C. 2 < m ≤ 3.
D. 2 ≤ m ≤ 3.
Câu 85. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.

C. Khối bát diện đều.

D. Khối 20 mặt đều.

Câu 86. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. .
B. 6.
C. 9.
D. .
2
2
Câu 87. Biểu thức nào sau đây khơng

√ 0 có nghĩa

−3
−1
C.
−1.
D. (−1)−1 .
A. 0 .
B. (− 2) .
x−1 y z+1
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. 2x − y + 2z − 1 = 0.
C. −x + 6y + 4z + 5 = 0.
D. 10x − 7y + 13z + 3 = 0.

Câu 88. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

Câu 89.
Z Các khẳng định nào sau
Z đây là sai?

f (u)dx = F(u) +C. B.

!0


f (x)dx = f (x).
Z
Z
Z
Z
C.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. D.
k f (x)dx = k
f (x)dx, k là hằng số.
A.

f (x)dx = F(x) +C ⇒

Z

Câu 90. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 20.
C. 3, 55.
D. 15, 36.
x
9
Câu 91. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. 2.

B. −1.
C. .
D. 1.
2
Câu 92. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (−∞; 1).
C. R.

D. (2; +∞).
Trang 7/10 Mã đề 1


Câu 93. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
Câu 94. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
100.(1, 01)3
100.1, 03
triệu.
B. m =
triệu.
A. m =
3
3
(1, 01)3
120.(1, 12)3

C. m =
triệu.
D.
m
=
triệu.
(1, 01)3 − 1
(1, 12)3 − 1
Câu 95.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
( f (x) − g(x))dx =

A.
Z
C.

( f (x) + g(x))dx =

f (x)dx −
Z

f (x)dx +

g(x)dx.

k f (x)dx = f

B.


Z

Z
g(x)dx.

Câu 96.! Dãy số nào sau đây có giới! hạn là 0?
n
n
5
4
.
B. − .
A.
e
3

D.

f (x)g(x)dx =

Z

!n
5
C.
.
3

f (x)dx, k ∈ R, k , 0.
Z

f (x)dx g(x)dx.
!n
1
D.
.
3

Câu 97. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 7.
B. .
C.
.
D. 5.
2
2
Câu 98. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 2400 m.
C. 6510 m.
D. 1202 m.

Câu 99. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 2 nghiệm.
B. 3 nghiệm.
C. Vô nghiệm.
D. 1 nghiệm.
Câu 100. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương

ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 3 lần.
log 2x

x2
1 − 4 ln 2x
1 − 2 log 2x
B. y0 =
.
C. y0 =
.
3
2x ln 10
x3

Câu 101. [3-1229d] Đạo hàm của hàm số y =
A. y0 =

2x3

1
.
ln 10

D. y0 =

1 − 2 ln 2x

.
x3 ln 10

Câu 102.
√ Thể tích của khối lăng
√ trụ tam giác đều có cạnh√bằng 1 là:
3
3
3
3
A.
.
B.
.
C.
.
D. .
12
2
4
4
Câu 103. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là √

3
3
3

a
3

a
3
2a
3
A. a3 3.
B.
.
C.
.
D.
.
3
6
3
Câu 104. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 0.
B. m > −1.
C. m > 1.

D. m ≥ 0.

Câu 105. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.

D. Khối 12 mặt đều.

C. Khối bát diện đều.

Trang 8/10 Mã đề 1




Câu 106. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. 63.
C. Vơ số.
D. 62.
Câu 107. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. 2e4 .
C. −2e2 .
D. −e2 .
Z 3
a
a
x
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
Câu 108. Cho I =

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = −2.
B. P = 28.
C. P = 16.
D. P = 4.
Câu 109. [1] Tập xác định của hàm số y = 4 x +x−2 là

A. D = (−2; 1).
B. D = R.
C. D = R \ {1; 2}.
2

D. D = [2; 1].

0 0 0 0
Câu 110.
a. Khoảng cách từ C đến √
AC 0 bằng
√ ABCD.A B C D cạnh √
√ [2] Cho hình lâp phương
a 6
a 6
a 3
a 6
A.
.
B.
.
C.
.
D.
.
3
2
7
2
5

Câu 111. Tính lim
n+3
A. 2.
B. 1.
C. 3.
D. 0.

Câu 112. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 113. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.

B. 0.

C. 1.

D. 3.

3

Câu 114. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e3 .
C. e2 .

D. e.
Câu 115. [4-1245d] Trong tất cả
√ các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
√ min |z − 1 − i|.
C. 1.
D. 10.
A. 2.
B. 2.
[ = 60◦ , S A ⊥ (ABCD).
Câu 116. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối chóp S .ABCD là

3
3
3

a 2
a
2
a 3
A.
.
B.
.
C. a3 3.
D.
.
6
4

12
x−2 x−1
x
x+1
Câu 117. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. (−∞; −3).
C. (−3; +∞).
D. [−3; +∞).
Câu 118. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (2; 4; 3).
C. (1; 3; 2).
D. (2; 4; 4).

Câu 119. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới đây?
"
!

5
5
A. 2; .
B. (1; 2).
C. [3; 4).
D.
;3 .
2
2
Trang 9/10 Mã đề 1


Câu 120. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là
A. 6, 12, 24.
B. 2 3, 4 3, 38.
C. 8, 16, 32.
D. 2, 4, 8.
Câu 121. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 1587 m.
C. 27 m.
D. 387 m.
1 3
Câu 122. [2D1-3] Cho hàm số y = − x + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch

3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. (−∞; −2] ∪ [−1; +∞). C. −2 ≤ m ≤ −1.
D. −2 < m < −1.
Câu 123. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 3.
C. 6.
D. 4.

Câu 124. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là

3

a3
a3 3
a 3
3
.
B. a 3.
C.
.
D.
.
A.
12
4

3
Câu 125. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
B. −e.
C. − 2 .
D. − .
2e
e
e
Câu 126. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a
a
a 3
.
B. a.
C. .
D. .
A.
2
2
3
!x
1
Câu 127. [2] Tổng các nghiệm của phương trình 31−x = 2 +

9

A. − log3 2.
B. − log2 3.
C. 1 − log2 3.
D. log2 3.
Câu 128. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 − 3n
A. un =
.
B. un =
.
5n + n2
n2

n2 − 2
C. un =
.
5n − 3n2

Câu 129. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. −3.
C. Không tồn tại.
1
Câu 130. Hàm số y = x + có giá trị cực đại là
x
A. 2.
B. −2.
C. 1.


n2 + n + 1
D. un =
.
(n + 1)2
D. −5.

D. −1.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2.

3.

D

4.

B


5.

D

6.

B

7. A

D

C

8.

9.

C

10. A

11.

C

12. A

13.


D

14.

15.

D

16. A

17.

D

18.

19.

D

20.

B
D
C

21. A

22.


D

23. A

24.

D

25. A

26.

27.

D

28. A

29. A

30.

31.

C

34. A

35. A


36.

42.

C

40.

B

44. A
46.

D

48.
50.

C

D

45.

D
B

49.

B


51.

C
B

53. A
B

56. A
58.
60.

C

43.
47.

52. A
54.

D

38. A

B

39.

B


32. A

33. A
37.

B

C

55.

C

57.

C

59.

C

61.

B

63.

B


64. A

65.

B

66. A

67.

68. A

69.

62.

B
D

1

D
B


70.

D

72.


73. A

C
C

76.

77.

78. A

79.

80.

D

81.

82.

D

83. A

84.

85.


C

86. A
D

89. A

90.

D

91.

92. A

93.
D

96.

97.

98.

C

100.

C


101.

102.

C

103.

D
B

D
B
D
B

99. A

B

D
B

105.

106.

D

107.


108.

D

109.

C
D
B

111.

110. A
112.

D

D

113. A

114. A

115.
B

119.

120. A


121.

122.

C

124.

C

117. A

118. A

123.
D

D
C
B

125. A
127.

B

128. A
130.


B

95.

C

94.

126.

C

87. A

88.

116.

D

75.

74. A

104.

C

71.


129.
B

2

B
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×