TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 11 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e2 .
B. −2e2 .
C. −e2 .
D. 2e4 .
Câu 2. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 8.
C. 12.
D. 30.
log(mx)
Câu 3. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m < 0 ∨ m > 4.
C. m < 0 ∨ m = 4.
D. m ≤ 0.
3
Câu 4. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e.
B. e3 .
C. e5 .
D. e2 .
d = 300 .
Câu 5. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ khối lăng trụ đã cho.
√ CC = 3a. Thể tích V 3của
√
3a 3
a3 3
.
B. V =
.
C. V = 3a3 3.
A. V =
D. V = 6a3 .
2
2
Câu 6. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
5a
2a
8a
.
B. .
C.
.
D.
.
A.
9
9
9
9
√
Câu 7. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√
√
√ tích khối chóp S .ABC3 √
3
a 2
a3 6
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
6
6
36
18
Câu 8. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
A. n3 lần.
B. 2n3 lần.
C. 2n2 lần.
D. n3 lần.
2
Câu 9. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
2
1
1
A. 3 .
B.
.
C.
.
e
2e3
e2
D.
1
√ .
2 e
Câu 10. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
9
2
1
1
A.
.
B. .
C. .
D.
.
10
5
5
10
Câu 11. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. Vô nghiệm.
C. 1.
D. 2.
Câu 12. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 5.
B. −6.
C. −5.
2
D. 6.
!
3n + 2
2
Câu 13. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 5.
B. 3.
C. 4.
D. 2.
Câu 14. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Ba mặt.
C. Năm mặt.
D. Hai mặt.
Trang 1/11 Mã đề 1
Câu 15. Khối đa diện đều loại {3; 3} có số mặt
A. 4.
B. 3.
√
x2 + 3x + 5
Câu 16. Tính giới hạn lim
x→−∞
4x − 1
1
A. 1.
B. − .
4
C. 2.
D. 5.
C. 0.
D.
1
.
4
! x3 −3mx2 +m
1
Câu 17. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m = 0.
B. m ∈ (0; +∞).
C. m ∈ R.
D. m , 0.
1
Câu 18. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. 1.
C. 2.
D. −2.
!
x+1
Câu 19. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
4035
2017
A.
.
B.
.
C. 2017.
D.
.
2017
2018
2018
Câu 20. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 5.
B. 0.
C. 7.
D. 9.
1
Câu 21. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 2 < m ≤ 3.
D. 0 < m ≤ 1.
x
Câu 22.
√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
3
1
3
.
B. .
C. 1.
D. .
A.
2
2
2
2n + 1
Câu 23. Tìm giới hạn lim
n+1
A. 2.
B. 1.
C. 3.
D. 0.
Câu 24. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 6510 m.
C. 2400 m.
D. 1134 m.
1 − 2n
Câu 25. [1] Tính lim
bằng?
3n + 1
1
2
2
A. .
B. 1.
C. − .
D. .
3
3
3
Câu 26. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
Câu 27. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Hai khối chóp tam giác.
D. Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 28.
Z Các khẳng định nào sau
Z đây là sai?
f (x)dx = F(x) +C ⇒
A.
Z
C.
f (x)dx = F(x) + C ⇒
f (u)dx = F(u) +C. B.
Z
f (t)dt = F(t) + C. D.
Z
Z
Z
k f (x)dx = k
f (x)dx, k là hằng số.
!0
f (x)dx = f (x).
Trang 2/11 Mã đề 1
Câu 29. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 20 mặt đều.
4x + 1
bằng?
Câu 30. [1] Tính lim
x→−∞ x + 1
A. −1.
B. 2.
C. Khối 12 mặt đều.
D. Khối tứ diện đều.
C. 4.
D. −4.
Câu 31. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
A. 2a 6.
B. a 3.
C.
.
D. a 6.
2
3
Câu 32. [2D1-3] Tìm giá trị của tham số m để f (x) = −x + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≤ 0.
B. m ≥ 0.
C. − < m < 0.
D. m > − .
4
4
0 0 0 0
Câu 33. Trong khơng gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A B C D , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; 3; 3).
C. A0 (−3; −3; 3).
D. A0 (−3; 3; 1).
Câu 34. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 0.
B. 1.
C. +∞.
D. 2.
Câu 35. [2] Tổng các nghiệm của phương trình 6.4 − 13.6 + 6.9 = 0 là
A. 0.
B. 1.
C. 3.
x
x
x
D. 2.
√
Câu 36. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) √
bằng
√
√
3a 58
3a 38
3a
a 38
.
B.
.
C.
.
D.
.
A.
29
29
29
29
Câu 37. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α
aα
A. aα+β = aα .aβ .
B. β = a β .
C. aα bα = (ab)α .
D. aαβ = (aα )β .
a
x−2 x−1
x
x+1
Câu 38. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. [−3; +∞).
C. (−∞; −3].
D. (−∞; −3).
Câu 39. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
a3 6
a3 6
a3 3
a3 6
.
B.
.
C.
.
D.
.
A.
24
48
24
8
Câu 40. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 12.
C. 10.
D. 30.
Câu 41. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 7.
C. 3.
D. 1.
Câu 42. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba cạnh.
B. Năm cạnh.
C. Bốn cạnh.
D. Hai cạnh.
x−1 y z+1
Câu 43. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
Trang 3/11 Mã đề 1
A. −x + 6y + 4z + 5 = 0.
C. 2x − y + 2z − 1 = 0.
B. 10x − 7y + 13z + 3 = 0.
D. 2x + y − z = 0.
Câu 44. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (2; 2).
C. (1; −3).
D. (−1; −7).
8
Câu 45. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 96.
B. 82.
C. 81.
D. 64.
Câu 46. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. lim f (x) = f (a).
x→a
x→a
x→a
C. f (x) có giới hạn hữu hạn khi x → a.
D. lim+ f (x) = lim− f (x) = +∞.
x→a
Câu 47. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 8.
x→a
C. 12.
D. 6.
Câu 48. Tập xác định của hàm số f (x) = −x + 3x − 2 là
A. (1; 2).
B. [−1; 2).
C. (−∞; +∞).
√
Câu 49. [1] Biết log6 a = 2 thì log6 a bằng
A. 4.
B. 108.
C. 6.
3
2
D. [1; 2].
D. 36.
Câu 50. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Z 2
ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
Câu 51. Cho
x2
1
A. 0.
B. −3.
C. 1.
D. 3.
Câu 52. [1] Đạo hàm của hàm số y = 2 x là
1
.
A. y0 = 2 x . ln 2.
B. y0 =
ln 2
C. y0 =
1
2 x . ln
x
D. y0 = 2 x . ln x.
.
2
Câu 53. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 2 − log2 3.
B. 1 − log2 3.
C. 1 − log3 2.
√
√
Câu 54. Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
x
+
3
+
6−x
√
√
A. 2 + 3.
B. 2 3.
C. 3.
D. 3 − log2 3.
√
D. 3 2.
Câu 55. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 20.
B. 24.
C. 15, 36.
D. 3, 55.
Câu 56. Cho số phức z thỏa mãn |z +
√ 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
C. |z| = 10.
D. |z| = 17.
A. |z| = 10.
B. |z| = 17.
2
2
Câu 57. [3-c]
và giá trị lớn nhất của hàm √
số f (x) = 2sin x + 2cos x lần lượt là
√ Giá trị nhỏ nhất √
A. 2 và 2 2.
B. 2 và 3.
C. 2 2 và 3.
D. 2 và 3.
Câu 58. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m = 0.
C. m < 0.
D. m > 0.
Câu 59. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −21.
B. P = 10.
C. P = 21.
D. P = −10.
Câu 60.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
A.
.
B.
.
4
2
√
a3 2
C.
.
12
√
a3 2
D.
.
6
Trang 4/11 Mã đề 1
Câu 61. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 2.
C. 1.
D. 6.
Câu 62. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 3
a3 5
a3 5
.
B.
.
C.
.
D.
.
A.
6
4
12
12
Câu 63. [1] Đạo hàm của làm số y = log x là
1
ln 10
1
1
A. y0 =
.
B. y0 =
.
C. y0 = .
D.
.
x ln 10
x
x
10 ln x
Câu 64. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD
√
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng
√
√
a 2
a 2
A.
.
B. a 2.
.
C. 2a 2.
D.
4
2
Câu 65.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
A.
Z
C.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
f (x)g(x)dx =
f (x)dx g(x)dx.
k f (x)dx = f
B.
Z
D.
f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Câu 66. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Cả hai đều sai.
C. Cả hai đều đúng.
D. Chỉ có (I) đúng.
π
Câu 67. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu thức T = a + b 3.
√
√
D. T = 3 3 + 1.
A. T = 2.
B. T = 4.
C. T = 2 3.
[ = 60◦ , S A ⊥ (ABCD).
Câu 68. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√chóp S .ABCD là
√
3
3
√
a 2
a3 3
a 2
3
A. a 3.
B.
.
C.
.
D.
.
4
12
6
Câu 69. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 5.
C. 6.
D. 8.
log(mx)
Câu 70. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m ≤ 0.
C. m < 0 ∨ m = 4.
D. m < 0.
√3
Câu 71. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. −3.
B. .
C. 3.
D. − .
3
3
Câu 72. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. Vơ số.
C. 3.
D. 2.
5
Câu 73. Tính lim
n+3
A. 1.
B. 2.
C. 3.
D. 0.
Trang 5/11 Mã đề 1
Câu 74. Tính lim
A. +∞.
x→3
x2 − 9
x−3
B. 3.
C. −3.
D. 6.
Câu 75. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.
√
√
√
√
5 13
A. 2.
B. 26.
C.
.
D. 2 13.
13
π π
Câu 76. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 3.
C. 7.
D. 1.
x−3
Câu 77. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. 1.
C. −∞.
D. 0.
Câu 78. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
√
Câu 79. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 63.
C. 64.
D. Vô số.
Câu 80. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.
C. Số mặt của khối chóp bằng 2n+1.
D. Số đỉnh của khối chóp bằng 2n + 1.
Câu 81. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
A. 2.
B. 1.
C. .
2
Câu 82. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 6.
C. 8.
Câu 83. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. 1.
C. 4 − 2 ln 2.
D.
ln 2
.
2
D. 10.
D. −2 + 2 ln 2.
Câu 84. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
10a 3
.
D. 10a3 .
A. 20a3 .
B. 40a3 .
C.
3
Câu 85. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều. C. Khối tứ diện đều.
D. Khối lập phương.
Câu 86. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.
B. 4.
C. 2.
D. 3.
Trang 6/11 Mã đề 1
Câu 87. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.
B. 8 năm.
C. 7 năm.
D. 10 năm.
Câu 88. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m ≤ 3.
C. m > 3.
D. m < 3.
Câu 89. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng
√
√
√
20 3
14 3
.
B.
.
C. 8 3.
D. 6 3.
A.
3
3
2
Câu 90. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
A. m = ±1.
B. m = ± 3.
C. m = ± 2.
D. m = ±3.
Câu 91. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
A. 2.
B. − .
C. −2.
2
D.
1
.
2
Câu 92. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 2.
C. 1.
D. 0.
1
Câu 93. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e + 1.
B. xy = e + 1.
C. xy0 = −ey − 1.
D. xy0 = ey − 1.
Câu 94. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Có một hoặc hai.
C. Khơng có.
D. Có một.
[ = 60◦ , S O
Câu 95. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√
√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S BC) bằng
√
2a 57
a 57
a 57
.
B.
.
C. a 57.
D.
.
A.
17
19
19
Câu 96. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
A. lim [ f (x) − g(x)] = a − b.
x→+∞
f (x) a
C. lim
= .
x→+∞ g(x)
b
x→+∞
B. lim [ f (x) + g(x)] = a + b.
x→+∞
D. lim [ f (x)g(x)] = ab.
x→+∞
x−3 x−2 x−1
x
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (2; +∞).
B. (−∞; 2].
C. [2; +∞).
D. (−∞; 2).
Câu 97. [4-1213d] Cho hai hàm số y =
Câu 98. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (1; +∞).
C. (−∞; −1).
D. (−1; 1).
Câu 99. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.
D. Khối tứ diện đều.
C. Khối lập phương.
Câu 100. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = ln 10.
B. f 0 (0) = 1.
C. f 0 (0) =
1
.
ln 10
D. f 0 (0) = 10.
Trang 7/11 Mã đề 1
Câu 101. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 102. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (2; +∞).
C. (−∞; 1).
D. R.
Câu 103. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. Vô nghiệm.
C. 1.
D. 3.
Câu 104. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. Vô nghiệm.
C. 3.
D. 1.
Câu 105. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)20
C 20 .(3)30
C 40 .(3)10
C 10 .(3)40
B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4
4
Câu 106. Phát biểu nào sau đây là sai?
1
A. lim un = c (Với un = c là hằng số).
B. lim √ = 0.
n
1
n
C. lim q = 1 với |q| > 1.
D. lim k = 0 với k > 1.
n
1
a
, với a, b ∈ Z. Giá trị của a + b là
Câu 107. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 2.
B. 7.
C. 4.
D. 1.
Câu 108. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 + ln x.
B. y0 = 1 − ln x.
C. y0 = x + ln x.
D. y0 = ln x − 1.
x=t
Câu 109. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
B. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z − 3) = .
D. (x + 3) + (y + 1) + (z + 3) = .
4
4
Câu 110. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp
√ là√
A. 2, 4, 8.
B. 6, 12, 24.
C. 2 3, 4 3, 38.
D. 8, 16, 32.
1 − xy
Câu 111. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
x + 2y
nhất Pmin của P√ = x + y.
√
√
√
9 11 + 19
18 11 − 29
9 11 − 19
2 11 − 3
A. Pmin =
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
9
21
9
3
2n − 3
Câu 112. Tính lim 2
bằng
2n + 3n + 1
A. −∞.
B. +∞.
C. 1.
D. 0.
Câu 113. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Trang 8/11 Mã đề 1
Câu 114. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 5.
C. 2.
D. 4.
Câu 115. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. m ≤ 3.
C. −2 ≤ m ≤ 2.
D. −3 ≤ m ≤ 3.
2x + 1
Câu 116. Tính giới hạn lim
x→+∞ x + 1
1
A. .
B. −1.
C. 1.
D. 2.
2
Câu 117. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √
√
√
a3 3
a3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
4
12
8
d = 30◦ , biết S BC là tam giác đều
Câu 118. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
13
26
16
9
Câu 119. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính
.ABC theo a
√
√ thể tích của khối chóp 3S√
3
a 15
a3
a3 5
a 15
.
B.
.
C.
.
D.
.
A.
5
25
3
25
2
Câu 120. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 3.
B. 4.
C. 5.
Câu 121. [12215d] Tìm m để phương trình 4
9
A. 0 ≤ m ≤ .
B. m ≥ 0.
4
√
x+ 1−x2
√
D. 2.
− 3m + 4 = 0 có nghiệm
3
3
C. 0 ≤ m ≤ .
D. 0 < m ≤ .
4
4
− 4.2 x+
1−x2
Câu 122. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m ≤ .
C. m < .
D. m ≥ .
4
4
4
4
Câu 123. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 17 tháng.
B. 16 tháng.
C. 15 tháng.
D. 18 tháng.
Câu 124. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (0; +∞).
C. (−∞; 0) và (2; +∞). D. (0; 2).
Câu 125. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
= 0.
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
vn
!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
C. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
3
2
Câu 126. Giá
√ trị cực đại của hàm số√y = x − 3x − 3x + 2 √
A. −3 + 4 2.
B. 3 + 4 2.
C. 3 − 4 2.
√
D. −3 − 4 2.
Trang 9/11 Mã đề 1
7n2 − 2n3 + 1
Câu 127. Tính lim 3
3n + 2n2 + 1
7
B. 1.
A. .
3
2
D. - .
3
x+3
Câu 128. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 2.
B. 1.
C. Vô số.
D. 3.
C. 0.
Câu 129. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Có hai.
C. Khơng có.
D. Có vơ số.
Câu 130. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 3.
B. 1.
C. 2.
D. 5.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/11 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
C
2.
C
3.
C
4.
C
5.
B
6. A
D
7.
8. A
9.
C
10. A
11.
C
12.
13.
C
14.
B
15. A
16.
B
17. A
18.
D
20.
D
D
19.
21.
C
22.
23. A
25.
C
B
26.
B
B
28. A
29.
B
30.
33.
D
B
36.
40.
41. A
42. A
46.
C
D
B
B
48.
49. A
50.
B
C
B
52. A
54.
53. A
55.
C
56.
57.
C
58. A
59. A
D
C
60.
61.
D
63. A
65.
67.
C
44. A
B
47.
51.
B
38.
B
45.
D
34. A
39. A
43.
C
32.
35. A
37.
C
24.
27.
31.
C
C
62.
D
64.
D
66. A
C
B
68.
1
B
69.
71.
70.
C
B
D
73.
75.
C
77.
D
72.
D
74.
D
76.
D
78.
79. A
80. A
81. A
82.
83. A
84. A
D
85.
D
91.
D
90. A
92.
C
93.
D
94.
95.
D
96.
99.
D
102. A
103. A
104.
105.
B
106.
107.
B
108. A
109. A
110.
D
113.
C
118. A
B
B
D
D
C
C
D
117.
B
D
114.
116.
120.
B
122.
B
124.
C
126. A
C
127.
D
D
D
125.
C
112.
115.
121.
B
100. A
101. A
111.
D
98.
C
97.
129.
C
88. A
89.
123.
C
86.
87. A
119.
C
128.
D
130.
B
2
D
C