TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Tăng lên (n − 1) lần. B. Tăng lên n lần.
C. Giảm đi n lần.
D. Không thay đổi.
Câu 2. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x y z−1
x−2 y−2 z−3
A. = =
.
B.
=
=
.
1 1
1
2
3
4
x−2 y+2 z−3
x y−2 z−3
=
.
D.
=
=
.
C. =
2
3
−1
2
2
2
2n + 1
Câu 3. Tính giới hạn lim
3n + 2
1
3
2
B. .
C. 0.
D. .
A. .
3
2
2
Câu 4. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 4).
C. (2; 4; 3).
D. (2; 4; 6).
√
√
Câu 5. Tìm giá trị lớn nhất của hàm
√
√ số y = x + 3 + 6 − x√
A. 3.
B. 2 3.
C. 2 + 3.
D. 3 2.
Câu 6. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−3; 1].
B. [−1; 3].
C. (−∞; −3].
D. [1; +∞).
Câu 7. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Câu 8. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 10.
B. 4.
C. 11.
D. 12.
√
√
4n2 + 1 − n + 2
Câu 9. Tính lim
bằng
2n − 3
3
A. 1.
B. .
C. 2.
D. +∞.
2
Câu 10. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng
√
√
√
√
2a 3
a 3
a 3
B.
A. a 3.
.
C.
.
D.
.
2
2
3
Câu 11. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 1.
B. m > 0.
C. m ≥ 0.
!x
1
1−x
Câu 12. [2] Tổng các nghiệm của phương trình 3 = 2 +
là
9
A. − log2 3.
B. log2 3.
C. 1 − log2 3.
D. m > −1.
D. − log3 2.
Trang 1/10 Mã đề 1
Câu 13. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là
√
√
3
3
a 3
a 2
a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
24
16
48
48
Câu 14. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −21.
B. P = −10.
C. P = 21.
D. P = 10.
Câu 15. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −2.
B. 4.
C. 2.
D. −4.
Câu 16. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −5.
C. −15.
D. −9.
mx − 4
Câu 17. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 26.
C. 45.
D. 34.
Câu 18. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. [1; 2].
C. (−∞; +∞).
D. [−1; 2).
Câu 19. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 8 mặt.
D. 10 mặt.
Câu 20. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 21.
B. 24.
C. 23.
D. 22.
[ = 60◦ , S A ⊥ (ABCD).
Câu 21. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh
√chóp S .ABCD là
√ S C là a. Thể tích khối
√
3
3
√
a 2
a3 3
a 2
3
.
C.
.
D.
.
B.
A. a 3.
12
4
6
1
Câu 22. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 < m ≤ 3.
C. 2 ≤ m ≤ 3.
D. 0 < m ≤ 1.
x2 − 5x + 6
x→2
x−2
B. 5.
Câu 23. Tính giới hạn lim
A. 0.
Câu 24. Hàm số nào sau đây khơng có cực trị
x−2
A. y =
.
B. y = x3 − 3x.
2x + 1
√
Câu 25. [12215d] Tìm m để phương trình 4 x+
3
A. 0 < m ≤ .
B. m ≥ 0.
4
1−x2
C. −1.
D. 1.
C. y = x4 − 2x + 1.
1
D. y = x + .
x
√
− 3m + 4 = 0 có nghiệm
9
3
C. 0 ≤ m ≤ .
D. 0 ≤ m ≤ .
4
4
− 4.2 x+
1−x2
Câu 26. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 0.
B. 3.
C. −3.
D. −6.
Câu 27. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m > .
C. m ≤ .
D. m ≥ .
4
4
4
4
Câu 28. Biểu thức nào sau đây √
khơng có nghĩa
√
−3
−1
A. (−1) .
B.
−1.
C. (− 2)0 .
D. 0−1 .
Trang 2/10 Mã đề 1
Câu 29. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m = 0.
C. m , 0.
√
Câu 30. [1] Biết log6 a = 2 thì log6 a bằng
A. 6.
B. 36.
C. 4.
3
2
Câu 31. Giá
√ x − 3x − 3x + 2
√
√ trị cực đại của hàm số y =
A. 3 − 4 2.
B. −3 − 4 2.
C. 3 + 4 2.
D. m > 0.
D. 108.
√
D. −3 + 4 2.
Câu 32. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 3.
C. 6.
D. 4.
Câu 33. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m > 3.
C. m < 3.
D. m ≤ 3.
Câu 34. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
120.(1, 12)3
(1, 01)3
triệu.
B.
m
=
triệu.
A. m =
(1, 01)3 − 1
(1, 12)3 − 1
100.(1, 01)3
100.1, 03
C. m =
triệu.
D. m =
triệu.
3
3
Câu 35. Khối đa diện đều loại {3; 4} có số đỉnh
A. 6.
B. 4.
C. 10.
D. 8.
q
Câu 36. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 2].
C. m ∈ [−1; 0].
D. m ∈ [0; 1].
!
!
!
1
2
2016
4x
Câu 37. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 1008.
B. T = 2017.
C. T = 2016.
D. T =
.
2017
Câu 38. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = R \ {1; 2}.
C. D = [2; 1].
2
D. D = R.
Câu 39. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. −2.
B. .
C. − .
D. 2.
2
2
Câu 40. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu của A lên BC là
!
!
5
7
8
A.
; 0; 0 .
B.
; 0; 0 .
C. (2; 0; 0).
D.
; 0; 0 .
3
3
3
Câu 41. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (−∞; −1).
C. (−1; 1).
D. (−∞; 1).
Câu 42. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≥ 3.
C. m ≤ 3.
D. m > 3.
Trang 3/10 Mã đề 1
Câu 43. Phát biểu nào sau đây là sai?
1
A. lim k = 0.
n
C. lim un = c (un = c là hằng số).
B. lim qn = 0 (|q| > 1).
1
D. lim = 0.
n
2
Câu 44. [1224d] Tìm tham số thực m để phương trình log3 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m ≥ .
C. m > .
D. m ≤ .
4
4
4
4
Câu 45. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Khơng có.
B. Có một.
C. Có hai.
D. Có một hoặc hai.
Câu 46. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 47. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = ln x − 1.
C. y0 = x + ln x.
Câu 48. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. −1.
C. 1.
D. y0 = 1 + ln x.
D. 2.
Câu 49. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng
√
√
√
√
a 2
a 2
.
D.
.
B. a 2.
C.
A. 2a 2.
2
4
!
1
1
1
Câu 50. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 1.
B. .
C. 0.
D. 2.
2
Câu 51. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 25 m.
C. 27 m.
D. 1587 m.
Câu 52. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Bốn mặt.
C. Ba mặt.
D. Một mặt.
Câu 53. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
d = 30◦ , biết S BC là tam giác đều
Câu 54. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
9
16
13
26
Câu 55. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 8.
C. 6.
D. 4.
Câu 56. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 18.
B.
.
C. 12.
D. 27.
2
Trang 4/10 Mã đề 1
Câu 57. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog
A. 5.
B. 25.
√
a
5
√
C.
bằng
5.
D.
1
.
5
x+1
Câu 58. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. 1.
C. .
D. .
3
6
2
0 0 0 0
Câu 59. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
1
ab
.
B.
.
C.
.
D.
.
A. 2
√
√
√
a + b2
a2 + b2
a2 + b2
2 a2 + b2
Câu 60. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −2.
B. x = −8.
C. x = 0.
D. x = −5.
Câu 61. Tính thể tích khối lập phương
biết tổng diện tích tất cả các mặt bằng 18.
√
A. 27.
B. 3 3.
C. 8.
D. 9.
Câu 62. Trong các khẳng định sau, khẳng định nào sai?√
A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
C. Cả ba đáp án trên.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
n−1
Câu 63. Tính lim 2
n +2
A. 0.
B. 1.
C. 3.
D. 2.
Câu 64. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
" đây?
!
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới
5
5
B. [3; 4).
C.
;3 .
D. (1; 2).
A. 2; .
2
2
Câu 65. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −3.
B. m = 0.
C. m = −1.
√
ab.
D. m = −2.
Câu 66. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 27cm3 .
C. 64cm3 .
D. 46cm3 .
Câu 67. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.
1 − 2n
bằng?
Câu 68. [1] Tính lim
3n + 1
1
2
A. .
B. .
3
3
C. Khối bát diện đều.
D. Khối lập phương.
2
C. − .
3
D. 1.
d = 60◦ . Đường chéo
Câu 69. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
0
0 0
0 0
◦
BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
√
4a3 6
2a3 6
a3 6
3
.
B.
.
C. a 6.
D.
.
A.
3
3
3
1
Câu 70. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 3.
C. 4.
D. 1.
Trang 5/10 Mã đề 1
Câu 71. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
5
23
13
A.
.
B. − .
C. −
.
D.
.
25
16
100
100
Câu 72. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 3, 55.
C. 15, 36.
D. 20.
Câu 73. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 3 mặt.
D. 4 mặt.
x−3
bằng?
Câu 74. [1] Tính lim
x→3 x + 3
A. 0.
B. +∞.
C. 1.
D. −∞.
π
Câu 75. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu √
thức T = a + b 3.
√
B. T = 2.
C. T = 4.
D. T = 3 3 + 1.
A. T = 2 3.
Câu 76. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
3
5a 3
2a3 3
4a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
2
√
Câu 77. √Xác định phần ảo của số phức z = ( 2 + 3i)2
√
A. −6 2.
B. −7.
C. 7.
D. 6 2.
Câu 78. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 20 triệu đồng.
D. 2, 22 triệu đồng.
Câu 79. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
20
10
20
40
C50
.(3)20
C50
.(3)40
C50
.(3)30
C50
.(3)10
.
B.
.
C.
.
D.
.
A.
450
450
450
450
Câu 80. Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A. Bát diện đều.
B. Nhị thập diện đều. C. Tứ diện đều.
D. Thập nhị diện đều.
x3 − 1
Câu 81. Tính lim
x→1 x − 1
A. 3.
B. +∞.
C. −∞.
D. 0.
Câu 82. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √
√
a3 3
a3 3
a3 3
a3
A.
.
B.
.
C.
.
D.
.
8
12
4
4
Câu 83. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
Trang 6/10 Mã đề 1
√
20 3
B. 8 3.
C.
.
3
[2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
B. 10.
C. 3.
2n + 1
Tìm giới hạn lim
n+1
B. 1.
C. 3.
√
A. 6 3.
Câu 84.
A. 27.
Câu 85.
A. 0.
√
√
14 3
D.
.
3
D. 12.
D. 2.
Câu 86. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 7.
B. 1.
C. 2.
D. 3.
1
a
, với a, b ∈ Z. Giá trị của a + b là
Câu 87. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
4 b ln 3
A. 4.
B. 1.
C. 2.
D. 7.
d = 120◦ .
Câu 88. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
D. 2a.
A. 4a.
B. 3a.
C.
2
log(mx)
Câu 89. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m ≤ 0.
C. m < 0 ∨ m = 4.
D. m < 0 ∨ m > 4.
x+2
Câu 90. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. Vô số.
B. 3.
C. 1.
D. 2.
Câu 91. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
C. V = S h.
D. V = 3S h.
A. V = S h.
B. V = S h.
3
2
Câu 92. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a
a
5a
8a
A.
.
B. .
C.
.
D.
.
9
9
9
9
Câu 93. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
ab
1
A. √
.
B. √
.
C. √
.
D. 2
.
a + b2
2 a2 + b2
a2 + b2
a2 + b2
Câu 94. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng 2n+1.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng 2n.
Câu 95. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
2
Câu 96. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
A. 3 .
B. 2 .
C. √ .
2e
e
2 e
D.
2
.
e3
Trang 7/10 Mã đề 1
Câu 97. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
A. lim [ f (x) + g(x)] = a + b.
B. lim [ f (x) − g(x)] = a − b.
x→+∞
x→+∞
f (x) a
= .
C. lim [ f (x)g(x)] = ab.
D. lim
x→+∞
x→+∞ g(x)
b
Câu 98. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 30.
C. 12.
D. 8.
Câu 99. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số đồng biến trên khoảng (1; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số nghịch biến trên khoảng (0; 1).
!2x−1
!2−x
3
3
Câu 100. Tập các số x thỏa mãn
≤
là
5
5
A. [3; +∞).
B. [1; +∞).
C. (−∞; 1].
D. (+∞; −∞).
x+1
Câu 101. Tính lim
bằng
x→+∞ 4x + 3
1
1
D. .
A. 1.
B. 3.
C. .
4
3
2x + 1
Câu 102. Tính giới hạn lim
x→+∞ x + 1
1
C. 1.
D. −1.
A. 2.
B. .
2
Câu 103. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Câu 104. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Z 1
Câu 105. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
1
1
B. 0.
C. .
D. 1.
A. .
2
4
Câu 106. √
Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z −√2 − 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 17.
C. |z| = 17.
D. |z| = 10.
Câu 107. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 22.
C. y(−2) = 6.
D. y(−2) = 2.
Câu 108. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc
45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
√
10a3 3
A.
.
B. 40a3 .
C. 10a3 .
D. 20a3 .
3
Câu 109. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C. Khối bát diện đều. D. Khối lập phương.
0 0 0 0
Câu 110.
a. Khoảng cách từ C đến √
AC 0 bằng
√ ABCD.A B C D cạnh √
√ [2] Cho hình lâp phương
a 3
a 6
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
2
7
3
Trang 8/10 Mã đề 1
! x3 −3mx2 +m
1
Câu 111. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ (0; +∞).
B. m ∈ R.
C. m = 0.
D. m , 0.
1 − n2
Câu 112. [1] Tính lim 2
bằng?
2n + 1
1
1
1
B. .
C. − .
D. 0.
A. .
3
2
2
Câu 113. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính
.ABC theo a
√ thể tích của khối chóp 3S√
√
a3 15
a 15
a3 5
a3
A.
.
B.
.
C.
.
D.
.
5
25
25
3
Câu 114. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. 3.
C. Vô số.
D. 2.
Câu 115. Giá trị của lim (3x2 − 2x + 1)
x→1
A. +∞.
B. 1.
C. 3.
D. 2.
Câu 116. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích
hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 4.
C. 0, 5.
D. 0, 2.
√
Câu 117. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả
bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 63.
C. 62.
D. 64.
Câu 118. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
3
3
3
3
a 3
8a 3
8a 3
4a 3
.
B.
.
C.
.
D.
.
A.
9
3
9
9
2
Câu 119. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 6.
B. 8.
C. 5.
D. 7.
x=t
Câu 120. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
B. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z + 3) = .
D. (x + 3) + (y + 1) + (z − 3) = .
4
4
1
Câu 121. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 2.
C. 4.
D. 3.
Câu 122. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 8.
C. 30.
D. 20.
Câu 123. ZCho hai hàm Zy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Trang 9/10 Mã đề 1
Z
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
B. Nếu
f (x)dx =
Z
Câu 124. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 50, 7 triệu đồng.
C. 70, 128 triệu đồng. D. 3, 5 triệu đồng.
Câu 125.
[1233d-2] MệnhZđề nào sau đây
Z
Z sai?
[ f (x) − g(x)]dx =
A.
f (x)dx −
g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
π
x
Câu 126. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2
√
√
1 π
3 π6
2 π4
B.
C. 1.
D. e 3 .
e .
e .
A.
2
2
2
!
x+1
Câu 127. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2016
2017
A.
.
B. 2017.
C.
.
D.
.
2018
2017
2018
Câu 128. Cho hình
√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là
√
√
3
3
√
a3 15
5
a
6
a
A.
.
B. a3 6.
.
D.
.
C.
3
3
3
Câu 129. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. 0.
C. 9.
D. Không tồn tại.
√
Câu 130. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√ cho là
√
√
√
πa3 6
πa3 3
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
3
6
2
B.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
C
1.
2. A
5.
7.
D
6. A
B
9. A
8.
D
10.
D
11.
D
12. A
13.
D
14. A
16. A
15. A
17.
19.
D
18.
C
22.
23.
C
24. A
25.
D
C
28.
29.
C
30.
31.
D
32.
33. A
34. A
35. A
36.
37. A
38.
39. A
40. A
C
42.
B
47.
D
48. A
49.
C
50. A
51.
C
52.
57.
61.
B
C
D
B
B
C
56. A
B
58.
60.
C
C
B
62. A
B
63. A
64.
65.
67.
C
54.
C
59.
D
D
46.
D
C
D
D
53.
B
44.
45.
55.
D
26.
27.
41.
C
20.
B
21.
43.
D
4.
3. A
D
66.
68.
C
1
C
B
C
69.
C
70.
71.
C
72.
73.
C
74. A
75.
C
76.
D
78.
D
80.
D
77.
79.
D
B
D
C
81. A
82. A
83. A
84.
C
85.
D
86.
C
87.
D
88.
C
89.
91.
C
B
93.
C
90.
D
92.
D
94.
D
95.
D
96.
97.
D
98.
99.
D
100.
101.
C
B
102. A
C
103.
B
D
104.
D
105. A
106. A
107. A
108.
D
110.
D
109.
D
111.
113.
112.
C
114.
B
115.
D
117.
118.
D
C
120. A
121. A
122.
B
125.
C
124. A
126.
C
127.
129.
D
116. A
C
119.
123.
C
D
B
128.
B
130.
2
D
B