Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thpt (800)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (156.57 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Cho
− 2i|. Tính |z|.
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2 √
A. |z| = 10.
B. |z| = 17.
C. |z| = 17.

D. |z| = 10.

Câu 2. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi
suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước đó.
Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết
rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền ra.
A. 210 triệu.
B. 220 triệu.
C. 216 triệu.
D. 212 triệu.
Câu 3. [1] Đạo hàm của hàm số y = 2 x là
1
1
.
C. y0 = 2 x . ln 2.


D. y0 =
.
A. y0 = 2 x . ln x.
B. y0 = x
2 . ln x
ln 2
Câu 4. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 9 mặt.
D. 4 mặt.
Câu 5. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên khoảng (−2; 1).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Câu 6.
mệnh đề sau, mệnh
Z Cho hàm số f (x), g(x)
Z liên tục trên
Z R. Trong các Z
Z đề nào sai?
( f (x) + g(x))dx =

A.
Z
C.

( f (x) − g(x))dx =


f (x)dx +

Z

g(x)dx.

f (x)dx −

k f (x)dx = f

B.

Z

Z
g(x)dx.

D.

f (x)g(x)dx =

Z

f (x)dx, k ∈ R, k , 0.
Z
f (x)dx g(x)dx.

Câu 7. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (0; 1).
C. (−1; 0).

D. (−∞; 0) và (1; +∞).
Câu 8. Dãy
!n số nào sau đây có giới
!n hạn là 0?
5
1
B.
.
A. − .
3
3

!n
4
C.
.
e

!n
5
D.
.
3

Câu 9. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Khơng có.
B. Có hai.
C. Có một hoặc hai.
D. Có một.

a
1
Câu 10. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 4.
B. 1.
C. 2.
D. 7.
Câu 11. Phát biểu nào sau đây là sai?
A. lim qn = 1 với |q| > 1.

1
B. lim √ = 0.
n

1
= 0 với k > 1.
D. lim un = c (Với un = c là hằng số).
nk
Câu 12. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = 10.
C. P = −21.
D. P = −10.
!x
1
Câu 13. [2] Tổng các nghiệm của phương trình 31−x = 2 +

9

A. − log3 2.
B. log2 3.
C. − log2 3.
D. 1 − log2 3.
C. lim

Trang 1/10 Mã đề 1


d = 300 .
Câu 14. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
Độ dài cạnh bên
CC 0 = 3a. Thể tích V của khối lăng trụ đã cho. √


3a3 3
a3 3
.
B. V = 3a3 3.
C. V =
.
D. V = 6a3 .
A. V =
2
2
[ = 60◦ , S O
Câu 15. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc

√ BC) bằng

√ với mặt đáy và S O = a. Khoảng cách từ O đến (S

a 57
a 57
2a 57
.
B. a 57.
.
D.
.
C.
A.
19
17
19
Câu 16. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 1.
B. 0.
C. 3.
D. 2.
Câu 17. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vuông góc
Thể tích khối chóp S .ABC √là
√ với đáy và S C = a 3.3 √

3
a 6
a 3
2a3 6

a3 3
A.
.
B.
.
C.
.
D.
.
12
4
9
2
x2 − 5x + 6
Câu 18. Tính giới hạn lim
x→2
x−2
A. 5.
B. −1.
C. 0.
D. 1.
Câu 19. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim+ f (x) = lim− f (x) = a.
C. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a

x→a


x→a

D. lim f (x) = f (a).
x→a

3

Câu 20. Tính lim
x→1

A. −∞.
Câu 21. Tính lim

x −1
x−1

x→+∞

A. −3.

B. +∞.

C. 3.

D. 0.

B. 1.

2

C. − .
3

D. 2.

C. 20.

D. 30.

x−2
x+3

Câu 22. Khối đa diện đều loại {5; 3} có số mặt
A. 12.
B. 8.

[ = 60◦ , S A ⊥ (ABCD).
Câu 23. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối chóp S .ABCD là

3
3

a 2
a3 3
a 2
3
.
B.

.
C. a 3.
D.
.
A.
4
12
6
Câu 24. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45√◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
10a3 3
A.
.
B. 10a3 .
C. 40a3 .
D. 20a3 .
3
Câu 25. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −2.
C. m = −3.
D. m = −1.
Câu 26. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Chỉ có (II) đúng.

C. Cả hai đều sai.


D. Chỉ có (I) đúng.
Trang 2/10 Mã đề 1


Câu 27. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(4; 8).
C. A(−4; −8)(.
D. A(4; −8).
Câu 28. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai ngun hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (I) sai.
sai.
Câu 29. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.

C. Câu (II) sai.

D. Câu (III) sai.

C. Khối lập phương.

D. Khối 12 mặt đều.

Câu 30. Khối đa diện đều loại {3; 5} có số cạnh

A. 30.
B. 8.

C. 20.

D. 12.

Câu 31. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.

C. Khối 12 mặt đều.

D. Khối bát diện đều.

Câu 32. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
a
2a
5a
8a
.
B. .
C.
.
D.
.
A.
9

9
9
9
Câu 33. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. 7, 2.
C. 72.
D. −7, 2.
Câu 34. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {3; 5}.
C. {5; 3}.

D. {4; 3}.

Câu 35. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 4.
B. V = 5.
C. V = 6.
D. V = 3.
Câu 36. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. −1.
C. 1.
!
x+1
. Tính tổng S = f 0 (1) +
Câu 37. [3] Cho hàm số f (x) = ln 2017 − ln
x

4035
2016
A. 2017.
B.
.
C.
.
2018
2017
cos n + sin n
Câu 38. Tính lim
n2 + 1
A. +∞.
B. 1.
C. −∞.

D. 2.
f 0 (2) + · · · + f 0 (2017)
D.

2017
.
2018

D. 0.

Câu 39. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1

1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
9
18
15
6
x
9
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
Câu 40. [2-c] Cho hàm số f (x) = x
9 +3
1
A. 1.
B. −1.
C. 2.
D. .
2
Trang 3/10 Mã đề 1


Câu 41. Tính lim

2n2 − 1
3n6 + n4


A. 2.

B. 0.

Câu 42. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
C. f (x) có giá trị nhỏ nhất trên K.

C.

2
.
3

B. f (x) xác định trên K.
D. f (x) liên tục trên K.

Câu 43. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 12.
C. 20.
log2 240 log2 15
Câu 44. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 3.
B. −8.
C. 1.
Câu 45. [2] Tổng các nghiệm của phương trình 3

A. 8.
B. 5.

D. 1.

D. 8.

D. 4.

x2 −3x+8

= 92x−1 là
C. 6.

D. 7.

Câu 46. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
!
7
5
8
A.
; 0; 0 .
B. (2; 0; 0).
C.
; 0; 0 .

D.
; 0; 0 .
3
3
3
Câu 47. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 18 tháng.
B. 15 tháng.
C. 17 tháng.
D. 16 tháng.
x+1
bằng
x→+∞ 4x + 3
B. 1.

Câu 48. Tính lim
A. 3.

C.

1
.
4

Câu 49. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.

C. 3 mặt.

D.

1
.
3

D. 5 mặt.

Câu 50.
Z [1233d-2] Mệnh đề nào sau đây sai?

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
B.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
D.
[ f (x) − g(x)]dx =

f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.

A.

Câu 51. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).
B. (−∞; −1).
C. (1; +∞).

D. (−∞; 1).

Câu 52. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Trang 4/10 Mã đề 1


Các mệnh đề đúng là
A. Cả ba mệnh đề.

B. (I) và (III).
C. (I) và (II).
2x + 1
Câu 53. Tính giới hạn lim
x→+∞ x + 1
1
C. −1.
A. 2.

B. .
2
Câu 54. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

D. (II) và (III).

D. 1.

(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.

B. 2.

C. 1.

D. 0.

Câu 55. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d nằm trên P.
C. d song song với (P).
D. d nằm trên P hoặc d ⊥ P.


Câu 56. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt √l

phần ảo là 1 − √

3.
B. Phần thực là √2 − 1, phần ảo là √
3.
A. Phần thực là 2, √
D. Phần thực là 2 − 1, phần ảo là − 3.
C. Phần thực là 1 − 2, phần ảo là − 3.
Câu 57. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Hai mặt.
C. Bốn mặt.
D. Năm mặt.



x = 1 + 3t




Câu 58. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là












x
=
1
+
3t
x
=
1
+
7t
x
=
−1
+
2t
x = −1 + 2t

















A. 
B. 
.
C. 
y = 1 + 4t .
y=1+t
y = −10 + 11t . D. 
y = −10 + 11t .

















z = 1 − 5t
z = 1 + 5t
z = −6 − 5t
z = 6 − 5t
Câu 59. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 1587 m.
B. 25 m.
C. 27 m.
D. 387 m.
Câu 60. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 10.

C. 8.

D. 6.

Câu 61. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1

ab
ab
1
A. √
.
C. √
.
B. 2
.
D. √
.
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
Câu 62. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. aα bα = (ab)α .
B. aα+β = aα .aβ .
C. β = a β .
D. aαβ = (aα )β .
a
Câu 63. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .

B. m > .
C. m ≤ .
D. m ≥ .
4
4
4
4
Trang 5/10 Mã đề 1


Câu 64. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
.
D. 5.
B. 68.
C.
A. 34.
17
Câu 65. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Hai cạnh.
C. Năm cạnh.

D. Ba cạnh.


Câu 66. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 27.
B. 10.
C. 3.

D. 12.

Câu 67. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (−∞; 0) và (2; +∞). C. (−∞; 2).

D. (0; 2).

Câu 68. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
2a 3
a 3
A.
.
B.
.
C.
.
D. a 3.
3
2

2
Câu 69. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (0; −2).
C. (−1; −7).

D. (1; −3).

Câu 70. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x y−2 z−3
x−2 y+2 z−3
=
=
.
B. =
=

.
A.
2
2
2
2
3
−1
x y z−1
x−2 y−2 z−3
C. = =
.
D.
=
=
.
1 1
1
2
3
4
Câu 71. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
A. 2
.
B. √

.
C. √
.
D. √
.
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 72. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√ C là

3
a 3
a3 3
a3
3
.
B.
.
C. a .
D.
.
A.
6
2
3

1
Câu 73. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. (−∞; −2] ∪ [−1; +∞). C. −2 ≤ m ≤ −1.
D. (−∞; −2) ∪ (−1; +∞).
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0.
D. m ≤ 0.

Câu 74. [1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m > 4.

B. m < 0 ∨ m = 4.

Câu 75. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 2.
B. 5.
C. 3.

D. 1.

Câu 76. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 64cm3 .
C. 48cm3 .

D. 91cm3 .
Câu 77. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m > .
C. m < .
D. m ≥ .
4
4
4
4
Trang 6/10 Mã đề 1


3

Câu 78. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e2 .
B. e5 .
C. e.

D. e3 .

Câu 79. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
A. .

B. − .
C. −2.
2
2

D. 2.


Câu 80. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3
a 6
a 6
a3 2
a3 6
A.
.
B.
.
C.
.
D.
.
18
6
6

36
log7 16
Câu 81. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. 4.
B. −2.
C. −4.
D. 2.
Câu 82.
Z Các khẳng định nào sau
Z đây là sai?
f (x)dx = F(x) + C ⇒

A.
Z
C.

f (x)dx = F(x) +C ⇒

f (t)dt = F(t) + C. B.

Z

f (u)dx = F(u) +C. D.

Z
Z


Z

k f (x)dx = k
f (x)dx, k là hằng số.
!0
f (x)dx = f (x).

Câu 83. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 12.
C. 8.
D. 6.
mx − 4
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 84. Tìm m để hàm số y =
x+m
A. 26.
B. 67.
C. 45.
D. 34.
Câu 85. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
1
3
3
A. .
B. .
C. 1.
D.
.
2

2
2
x+3
Câu 86. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 1.
B. Vô số.
C. 2.
D. 3.
Câu 87. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng



14 3
20 3
.
B.
.
C. 6 3.
D. 8 3.
A.
3
3
Câu 88. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)

cùng vng
√ góc với đáy, S C = a3 3. Thể tích khối chóp S .ABCD là

3
3
a 3
a
a
3
A.
.
B.
.
C. a3 .
D.
.
9
3
3
Câu 89. Mệnh đề
!0 nào sau đây sai?
Z
A.
f (x)dx = f (x).
Z
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

C. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
Trang 7/10 Mã đề 1


Câu 90. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≤ 0.
B. − < m < 0.
C. m ≥ 0.
D. m > − .
4
4
Câu 91. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 12.
C. 20.
D. 30.
Câu 92. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.

B. 2.

x+1
bằng

Câu 93. Tính lim
x→−∞ 6x − 2
1
A. .
B. 1.
2

C. 3.

C.

1
.
6

D. 4.

D.

1
.
3

Câu 94. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
(1, 01)3
100.(1, 01)3

triệu.
B. m =
triệu.
A. m =
3
(1, 01)3 − 1
100.1, 03
120.(1, 12)3
C. m =
triệu.
D. m =
triệu.
3
(1, 12)3 − 1
x−1 y z+1
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x − y + 2z − 1 = 0.
B. 10x − 7y + 13z + 3 = 0.
C. 2x + y − z = 0.
D. −x + 6y + 4z + 5 = 0.
Câu 95. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

Câu 96. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0

của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
6
12
36
24
x+2
Câu 97. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m

(−∞; −10)?
A. 3.
B. Vơ số.
C. 2.
D. 1.
1 − 2n
Câu 98. [1] Tính lim
bằng?
3n + 1
2
2
1
A. .
B. − .
C. 1.
D. .
3
3
3
Trang 8/10 Mã đề 1






Câu 99. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
9
3

A. 0 ≤ m ≤ .
B. 0 ≤ m ≤ .
C. 0 < m ≤ .
D. m ≥ 0.
4
4
4
Câu 100. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
2

2

hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.

B. Cả hai câu trên đúng. C. Chỉ có (I) đúng.

D. Chỉ có (II) đúng.

Câu 101. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.

B. Phần thực là −3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là −3, phần ảo là −4.
Câu 102. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = R \ {1}.
2−n
Câu 103. Giá trị của giới hạn lim
bằng
n+1
A. −1.
B. 2.

C. D = (0; +∞).

D. D = R \ {0}.

C. 1.

D. 0.

Câu 104. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√M + m
√ của hàm số. Khi đó tổng

A. 7 3.
B. 8 2.
C. 16.
D. 8 3.


Câu 105. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả
bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 64.
C. 63.
D. Vơ số.

Câu 106. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là √
3

a3 3
a3
a 3
.
B.
.
C.
.
D. a3 3.
A.
3
12
4
√3
4
Câu 107. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5

2
7
5
A. a 8 .
B. a 3 .
C. a 3 .
D. a 3 .
Câu 108. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 + 2e
A. m =
.
B. m =
.
C. m =
.
4e + 2
4e + 2
4 − 2e

D. m =

1 − 2e
.
4 − 2e

Câu 109. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2

A. 1.
B. .
C.
.
D. 2.
2
2
Câu 110. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng (S AB). Thiết diện của
√ hình chóp S .ABCD với
√mặt phẳng (AIC) có diện
√tích là
2
2
2
2
11a
a 5
a 2
a 7
A.
.
B.
.
C.
.
D.
.
32

16
4
8
Câu 111. Dãy số nào sau đây có giới hạn khác 0?
1
sin n
n+1
1
A. .
B.
.
C.
.
D. √ .
n
n
n
n
Trang 9/10 Mã đề 1


Câu 112. Hàm số y = x +
A. 2.

1
có giá trị cực đại là
x
B. −2.

C. −1.


D. 1.

Câu 113. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường



√ thẳng BD bằng
a b2 + c2
c a2 + b2
b a2 + c2
abc b2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 114. [2] Cho chóp đều S .ABCD có đáy là hình vuông tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng





a 6
A. a 6.
B. a 3.
C. 2a 6.
D.
.
2
Câu 115. Tính thể tích khối lập phương biết tổng diện tích√tất cả các mặt bằng 18.
A. 27.
B. 9.
C. 3 3.
D. 8.
Câu 116. [3] Biết rằng giá trị lớn nhất của hàm số y =
các số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 24.

m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là
x
e

C. S = 32.

D. S = 135.

Câu 117. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên

A. n2 lần.
B. n3 lần.
C. 3n3 lần.
D. n lần.
Câu 118. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
B. 3.
C. 1.
D. .
A. .
2
2

Câu 119. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. Vô nghiệm.
B. 2 nghiệm.
C. 3 nghiệm.
D. 1 nghiệm.
Câu 120. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 46cm3 .
C. 72cm3 .
D. 64cm3 .
Câu 121. Khối đa diện đều loại {5; 3} có số đỉnh
A. 20.
B. 8.


C. 12.

Câu 122. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. Vô nghiệm.
C. 2.

D. 30.
D. 3.

Câu 123. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
A. 82.

B. 64.

C. 81.

D. 96.

8
x

[ = 60◦ , S O
Câu 124. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ A đến (S
√ BC) bằng

a 57
2a 57

a 57
A.
.
B.
.
C.
.
D. a 57.
19
19
17
Câu 125. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
B. Hai hình chóp tứ giác.
C. Hai hình chóp tam giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
Trang 10/10 Mã đề 1


Câu 126. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 4.
C. ln 12.
D. ln 10.
Câu 127. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.

Câu 128. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 9.
B. 13.
C. Không tồn tại.

D. 0.

Câu 129. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. [−3; 1].
C. (−∞; −3].
D. [1; +∞).
Câu 130. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
n2 + n + 1
.
B.
u
=
.
A. un =
n
(n + 1)2
5n − 3n2

C. un =

1 − 2n
.

5n + n2

D. un =

n2 − 3n
.
n2

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
2.

1. A
3.

C

4.

7.

C

8.


9.

C

10.

11. A
C

13.
15.

D

17. A
D

19.

B
D

12.

C

14.

C


16.

B

18.

B

B

C

22. A
24.

25.

B

26.

27.

B

28. A

29.


C

30. A

31.

C

32. A

33.

D

34.

35. A

D
B

B

36. A

37.

D

38.


40. A
42.

D
B

46.

D

D

41.

B

43.

B

45.

D

47.

D

48.


C

49.

50.

C

51. A

52.

C

53. A

54.

D

20.

23. A

44.

B

6.


5. A

21.

D

B

55.

B

D

56.

D

57. A

58.

D

59.

C

60.


C

61.

C

62.

C

63.

C

64.

C

65.

66.

C

67.

B

69.


B

68. A
1

D


70.

71.

C

B

72.

B

73.

74.

B

75. A

76.


B

77. A

78.

B

79.

C

81.

C

80. A
82.

C

83.

C

B

84.


D

85.

C

86.

D

87.

C

88.

89.

B
D

90.

91.

C

92.

B

C

93.

94.

B

95.

96.

B

97.

98.

B

99. A

100.

B

101.

102. A


B
C
B

103. A
C

104.

105. A

106. A

107.

108. A

109.

110.
112.

D

D

B
D

111.

113.

B

114. A

C
B

115.
C

C

117.

B

118. A

119.

B

120. A

121. A

122. A


123.

C

125.

C

116.

124.

B

127.

126. A
128.
130.

D

129.

C

2

D
B




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×