TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 11 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
x+3
nghịch biến trên khoảng
Câu 1. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x−m
(0; +∞)?
A. 1.
B. 2.
C. Vô số.
D. 3.
Câu 2. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
D.
f (x)dx = f (x).
Câu 3. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; −8)(.
B. A(−4; 8).
C. A(4; 8).
D. A(4; −8).
Câu 4. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 3.
C. Vô nghiệm.
D. 2.
Câu 5. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 20.
D. 30.
C. 8.
Câu 6. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
D. 18.
A. 12.
B. 27.
C.
2
x−2
Câu 7. Tính lim
x→+∞ x + 3
2
A. − .
B. 2.
C. 1.
D. −3.
3
Câu 8. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 9. [1] Giá trị của biểu thức 9log3 12 bằng
A. 4.
B. 2.
2−n
bằng
Câu 10. Giá trị của giới hạn lim
n+1
A. 2.
B. −1.
C. 144.
D. 24.
D. 1.
Z 1
6
2
3
Câu 11. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. 2.
B. −1.
C. 0.
C. 4.
D. 6.
Câu 12. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình lập phương.
C. Hình tam giác.
D. Hình lăng trụ.
Câu 13. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 1.
B. 3.
D. 2.
C. +∞.
Câu 14. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m > .
C. m ≤ .
D. m < .
4
4
4
4
Trang 1/11 Mã đề 1
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m > 4.
D. m ≤ 0.
Câu 15. [1226d] Tìm tham số thực m để phương trình
A. m < 0.
B. m < 0 ∨ m = 4.
Câu 16. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 1; m = 1.
B. M = e−2 − 2; m = 1.
−2
C. M = e + 2; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 17. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Hai mặt.
B. Một mặt.
C. Ba mặt.
√
x2 + 3x + 5
Câu 18. Tính giới hạn lim
x→−∞
4x − 1
1
1
C. .
A. 0.
B. − .
4
4
D. Bốn mặt.
D. 1.
Câu 19. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 4 mặt.
C. 6 mặt.
D. 8 mặt.
Câu 20. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng
√
√
√
a b2 + c2
b a2 + c2
abc b2 + c2
c a2 + b2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 21. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. −2.
C. 4.
D. −4.
Câu 22. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
A. −2.
B. − .
C. 2.
2
D.
1
.
2
D.
1
.
2
Câu 23. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 24. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
A. 1.
B. 2.
C.
.
2
!
1
1
1
Câu 25. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 1.
B. .
C. 2.
2
Câu 26. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.
B. 4.
C. 1.
D. 0.
1
3|x−1|
= 3m − 2 có nghiệm duy
D. 3.
Câu 27. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d nằm trên P.
C. d ⊥ P.
D. d nằm trên P hoặc d ⊥ P.
√
Câu 28. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. Vô số.
C. 62.
D. 63.
Trang 2/11 Mã đề 1
Câu 29. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. m ≤ 0.
C. m ≥ 0.
D. m > − .
A. − < m < 0.
4
4
Câu 30. [2] Cho hình chóp S .ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng
√
√
√
a 2
a 2
A.
.
B.
.
C. a 2.
D. a 3.
3
2
1
bằng
Câu 31. [1] Giá trị của biểu thức log √3
10
1
1
A. − .
B. 3.
C. −3.
D. .
3
3
3
2
Câu 32. Tập xác định của hàm số f (x) = −x + 3x − 2 là
A. [−1; 2).
B. (1; 2).
C. (−∞; +∞).
D. [1; 2].
Câu 33. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 14.
C. ln 10.
D. ln 4.
Câu 34. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 12 cạnh.
C. 9 cạnh.
D. 10 cạnh.
Câu 35. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 2.
C. 5.
D. 3.
Câu 36. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 13 năm.
C. 10 năm.
D. 11 năm.
5
Câu 37. Tính lim
n+3
A. 2.
B. 3.
C. 0.
D. 1.
Câu 38. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (0; +∞).
D. (−∞; 0) và (2; +∞).
!
3n + 2
2
Câu 39. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 3.
B. 5.
C. 2.
D. 4.
d = 120◦ .
Câu 40. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 3a.
B. 2a.
C. 4a.
D.
.
2
Câu 41. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −9.
B. −15.
C. −5.
D. −12.
9x
Câu 42. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. 2.
B. −1.
C. 1.
D. .
2
3
2
Câu 43. Điểm cực đại của đồ thị hàm số y = 2x − 3x − 2 là
A. (1; −3).
B. (−1; −7).
C. (0; −2).
D. (2; 2).
C. (−∞; 2).
Trang 3/11 Mã đề 1
Câu 44. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
ab
1
.
B. 2
.
D. √
.
A. √
.
C. √
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 45. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (3; 4; −4).
C. ~u = (1; 0; 2).
D. ~u = (2; 1; 6).
Câu 46. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là
√
√
3
3
a 3
a 6
a3 3
a3 2
A.
.
B.
.
C.
.
D.
.
48
48
24
16
√
Câu 47. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng
√
1
C. 25.
D. 5.
A. 5.
B. .
5
x−3
Câu 48. [1] Tính lim
bằng?
x→3 x + 3
A. +∞.
B. −∞.
C. 1.
D. 0.
Câu 49. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (0; 1).
C. (−1; 0).
D. (−∞; −1) và (0; +∞).
log2 240 log2 15
Câu 50. [1-c] Giá trị biểu thức
−
+ log2 1 bằng
log3,75 2 log60 2
A. −8.
B. 1.
C. 4.
D. 3.
Câu 51. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. m ≥ 3.
C. m ≤ 3.
D. −2 ≤ m ≤ 2.
Câu 52. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp
√ phẳng vng góc với 3(ABCD).
√
√ S .ABCD là
3
3
√
a
a
a
2
3
3
A. a3 3.
.
C.
.
D.
.
B.
2
4
2
Câu 53. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 4.
C. 0, 5.
D. 0, 2.
2
Câu 54. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log3 2.
B. 3 − log2 3.
C. 2 − log2 3.
D. 1 − log2 3.
Câu 55. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
13
23
5
B.
.
C.
.
D. −
.
A. − .
16
25
100
100
Câu 56. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 0.
B. 3.
C. −3.
D. −6.
Câu 57. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là 4, phần ảo là 1.
D. Phần thực là 4, phần ảo là −1.
12 + 22 + · · · + n2
Câu 58. [3-1133d] Tính lim
n3
2
A. .
B. +∞.
3
C.
1
.
3
D. 0.
Trang 4/11 Mã đề 1
2n + 1
Câu 59. Tìm giới hạn lim
n+1
A. 0.
B. 1.
C. 2.
D. 3.
Câu 60. Cho
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
√
A. |z| = 17.
B. |z| = 17.
C. |z| = 10.
D. |z| = 10.
Câu 61. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −7.
B.
.
C. −4.
D. −2.
27
Câu 62. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 16 tháng.
B. 17 tháng.
C. 15 tháng.
D. 18 tháng.
3
2
Câu 63. Giá
√ x − 3x − 3x + 2
√
√ trị cực đại của hàm số y =
B. −3 − 4 2.
C. 3 − 4 2.
A. 3 + 4 2.
√
D. −3 + 4 2.
Câu 64. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 2.
C. Vô nghiệm.
D. 3.
Câu 65. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 11 năm.
C. 10 năm.
D. 14 năm.
Câu 66. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.
Câu 67. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. [−3; 1].
C. (−∞; −3].
D. [1; +∞).
Câu 68. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. n lần.
C. n2 lần.
D. 3n3 lần.
Câu 69. Dãy! số nào có giới hạn bằng 0?
n
6
.
B. un = n2 − 4n.
A. un =
5
!n
−2
C. un =
.
3
Câu 70. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −5.
B. −6.
C. 6.
D. un =
n3 − 3n
.
n+1
2
D. 5.
Câu 71. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
6
24
12
36
!
!
!
4x
1
2
2016
Câu 72. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2017.
B. T = 1008.
C. T =
.
D. T = 2016.
2017
Câu 73. Khối đa diện đều loại {5; 3} có số đỉnh
A. 12.
B. 8.
C. 30.
D. 20.
Trang 5/11 Mã đề 1
Câu 74. [2]√Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8
A. m = ± 2.
B. m = ± 3.
C. m = ±3.
D. m = ±1.
Câu 75. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số đỉnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Câu 76. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
23
1079
1728
.
B.
.
C.
.
D.
.
A.
4913
4913
68
4913
1 − n2
bằng?
Câu 77. [1] Tính lim 2
2n + 1
1
1
1
A. − .
B. .
C. .
D. 0.
2
2
3
Câu 78. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. +∞.
B. 1.
C. 2.
D. 0.
Câu 79. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 3.
B. 6.
C. 4.
D. 8.
Câu 80. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 6.
C. y(−2) = −18.
D. y(−2) = 2.
Câu 81. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (−∞; 6, 5).
C. (4; +∞).
D. (4; 6, 5].
Câu 82. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.
D. Khối 12 mặt đều.
C. Khối bát diện đều.
Câu 83.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) − g(x)]dx =
A.
f (x)dx −
g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
B.
Câu 84. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
D. .
A. 1.
B. 3.
C. .
2
2
Câu 85. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −5.
B. x = 0.
C. x = −8.
D. x = −2.
Câu 86. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 12.
C. 8.
Câu 87. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Ba cạnh.
C. Bốn cạnh.
D. 30.
D. Năm cạnh.
Trang 6/11 Mã đề 1
Câu 88. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 64cm3 .
C. 27cm3 .
D. 72cm3 .
Câu 89. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = 21.
C. P = −21.
D. P = 10.
1
Câu 90. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = ey + 1.
B. xy0 = ey − 1.
C. xy0 = −ey + 1.
D. xy0 = −ey − 1.
Câu 91. Cho z là nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
√
−1 + i 3
−1 − i 3
A. P = 2.
B. P =
.
C. P = 2i.
D. P =
.
2
2
log 2x
Câu 92. [1229d] Đạo hàm của hàm số y =
là
x2
1 − 2 ln 2x
1 − 4 ln 2x
1
1 − 2 log 2x
A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.
D. y0 =
.
3
x ln 10
2x ln 10
2x ln 10
x3
x−3 x−2 x−1
x
Câu 93. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (2; +∞).
B. [2; +∞).
C. (−∞; 2).
D. (−∞; 2].
Câu 94. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.
C. Khối 12 mặt đều.
D. Khối 20 mặt đều.
Câu 95. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 9.
B. 0.
C. 13.
D. Khơng tồn tại.
Câu 96. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. Không tồn tại.
B. −7.
C. −5.
D. −3.
Câu 97. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 12.
C. 10.
D. 6.
Câu 98. Dãy số nào sau đây có giới hạn khác 0?
n+1
1
B.
.
A. .
n
n
1
C. √ .
n
D.
Câu 99. Hàm số nào sau đây khơng có cực trị
1
A. y = x4 − 2x + 1.
B. y = x + .
C.
x
1 − 2n
Câu 100. [1] Tính lim
bằng?
3n + 1
2
A. 1.
B. .
C.
3
Câu 101. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 5}.
C.
Câu 102. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) liên tục trên K.
y=
x−2
.
2x + 1
sin n
.
n
D. y = x3 − 3x.
1
.
3
2
D. − .
3
{3; 4}.
D. {4; 3}.
B. f (x) có giá trị lớn nhất trên K.
D. f (x) xác định trên K.
Câu 103. Cho hình chóp S .ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là
√
√
a3 3
a3 3
2a3 3
A.
.
B.
.
C.
.
D. a3 3.
3
6
3
Trang 7/11 Mã đề 1
Câu 104. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x−2 y+2 z−3
x−2 y−2 z−3
A.
=
=
.
B.
=
=
.
2
2
2
2
3
4
x y−2 z−3
x y z−1
.
D. =
=
.
C. = =
1 1
1
2
3
−1
Câu 105. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
x−1 y z+1
= =
và
2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x − y + 2z − 1 = 0.
B. 2x + y − z = 0.
C. 10x − 7y + 13z + 3 = 0.
D. −x + 6y + 4z + 5 = 0.
! x3 −3mx2 +m
1
nghịch biến trên
Câu 107. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
khoảng (−∞; +∞)
A. m = 0.
B. m , 0.
C. m ∈ (0; +∞).
D. m ∈ R.
Câu 106. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
Câu 108. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai ngun hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.
B. Câu (I) sai.
Câu 109. Tứ diện đều thuộc loại
A. {3; 3}.
B. {4; 3}.
C. Khơng có câu nào D. Câu (II) sai.
sai.
C. {3; 4}.
D. {5; 3}.
Câu 110. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
A. 102.423.000.
B. 102.016.000.
C. 102.016.000.
D. 102.424.000.
x+2
Câu 111. Tính lim
bằng?
x→2
x
A. 0.
B. 2.
C. 1.
D. 3.
Câu 112. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log 14 x.
B. y = log √2 x.
√
C. y = loga x trong đó a = 3 − 2.
D. y = log π4 x.
!4x
!2−x
2
3
Câu 113. Tập các số x thỏa mãn
≤
là
2
#
" 3 !
"
!
2
2
2
A. −∞; .
B.
; +∞ .
C. − ; +∞ .
5
5
3
#
2
D. −∞; .
3
Trang 8/11 Mã đề 1
Câu 114. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √
√
a3 3
a3 3
a3 3
a3
.
B.
.
C.
.
D.
.
A.
4
12
8
4
Câu 115. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó
Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số
lượng vi khuẩn đạt 100.000 con?
A. 20.
B. 3, 55.
C. 15, 36.
D. 24.
1 + 2 + ··· + n
Câu 116. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 0.
1
D. lim un = 1.
C. lim un = .
2
√3
4
Câu 117. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
2
7
5
A. a 3 .
B. a 3 .
C. a 3 .
D. a 8 .
Câu 118. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
đề nào dưới đây đúng?
!
!
1
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số nghịch biến trên khoảng ; 1 .
3
3!
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số đồng biến trên khoảng ; 1 .
3
√
√
− 3m + 4 = 0 có nghiệm
3
9
C. 0 ≤ m ≤ .
D. 0 ≤ m ≤ .
4
4
[ = 60◦ , S O
Câu 120. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√
√ với mặt đáy và S O = a. Khoảng cách từ A đến (S√BC) bằng
√
2a 57
a 57
a 57
.
B. a 57.
C.
.
D.
.
A.
17
19
19
q
2
Câu 121. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x + log23 x + 1 + 4m −
√ i
h
1 = 0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 2].
C. m ∈ [0; 1].
D. m ∈ [−1; 0].
Câu 119. [12215d] Tìm m để phương trình 4 x+
3
A. m ≥ 0.
B. 0 < m ≤ .
4
1−x2
− 4.2 x+
1−x2
Câu 122. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Bát diện đều.
B. Nhị thập diện đều. C. Tứ diện đều.
D. Thập nhị diện đều.
Câu 123. [1] Tập
! xác định của hàm số! y = log3 (2x + 1) là
!
1
1
1
A. −∞; − .
B. −∞; .
C. − ; +∞ .
2
2
2
!
1
D.
; +∞ .
2
Câu 124. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 2.
C. 1.
D. Vô nghiệm.
Câu 125. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng
√
√
√
a 2
a 2
A.
.
B. a 2.
C.
.
D. 2a 2.
2
4
Câu 126. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Trang 9/11 Mã đề 1
Câu 127. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 8%.
C. 0, 5%.
D. 0, 6%.
Câu 128. Khối đa diện đều loại {3; 3} có số mặt
A. 4.
B. 2.
C. 5.
D. 3.
Câu 129. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. .
B. 6.
C. .
D. 9.
2
2
√
Câu 130. Thể tích của khối lập phương có cạnh bằng a 2 √
√
√
2a3 2
A. V = a3 2.
.
D. V = 2a3 .
B. 2a3 2.
C.
3
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/11 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
D
1.
C
3.
5.
C
2.
4. A
D
6.
D
D
7.
C
8.
9.
C
10.
11.
C
12.
C
14.
C
13.
15.
D
B
17.
D
19.
C
16.
B
18.
B
20. A
21.
B
22. A
23.
B
24.
25. A
C
C
D
28.
29.
D
30.
31. A
B
26.
27.
33.
B
B
32.
C
34.
B
35. A
D
36. A
37.
C
38.
D
D
39.
D
40.
41.
D
42.
43.
C
44. A
45.
C
46. A
47.
C
48.
49.
C
50. A
C
D
51. A
52.
D
53. A
54.
C
55.
D
56.
C
57.
D
58.
C
59.
D
60.
C
61.
D
62. A
63.
D
64.
65.
B
66.
67.
B
68. A
1
B
D
69.
C
70. A
71.
C
72.
73.
D
75.
74. A
76.
C
77. A
78.
79. A
80.
81.
D
82. A
83.
D
84.
85.
87.
B
D
C
C
D
C
88.
90.
C
91. A
B
92. A
93.
B
94.
95.
B
96. A
97.
B
98.
D
B
D
100.
C
99.
101.
B
86.
C
89.
B
B
102.
C
104.
C
106.
C
107. A
108.
C
109. A
110.
103. A
D
105.
111.
B
112.
D
B
113.
C
114.
C
115.
C
116.
C
117.
119.
B
118.
C
121.
123.
B
120.
D
C
122.
C
124.
125. A
126.
127. A
128. A
129. A
130.
2
D
B
C
B