Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (830)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.91 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [3] Cho khối chóp S .ABC có đáy là tam giác vng tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
2a
5a
a
A.
.
B.
.
C.
.
D. .
9
9
9
9
2
0
Câu 2. [2] Cho hàm số f (x) = x ln x. Giá trị f (e) bằng
2


A. .
B. 2e.
C. 2e + 1.
D. 3.
e
tan x + m
Câu 3. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. (1; +∞).
C. [0; +∞).
D. (−∞; 0] ∪ (1; +∞).
Câu 4. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng (AB0C)
và (A0C 0√
D) bằng



a 3
a 3
2a 3
.
B.
.
C.
.
D. a 3.

A.
2
2
3
[ = 60◦ , S A ⊥ (ABCD). Biết
Câu 5. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
rằng khoảng

√ cách từ A đến cạnh S C là a. Thể tích khối chóp
√S .ABCD là
3
3

a 3
a3 2
a 2
3
.
B. a 3.
C.
.
D.
.
A.
12
6
4
Câu 6. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?

A. y = log √2 x.

B. y = loga x trong đó a = 3 − 2.
C. y = log π4 x.
D. y = log 14 x.
Câu 7. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a
a 3
.
C. .
D. .
A. a.
B.
2
2
3
Câu 8. Bát diện đều thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {5; 3}.
D. {3; 4}.
3a
Câu 9. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng góc
2
của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt √
phẳng (S BD) bằng
a
a

2a
a 2
A. .
B. .
C.
.
D.
.
3
4
3
3
!
5 − 12x
Câu 10. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 1.
B. Vô nghiệm.
C. 3.
D. 2.
2
Câu 11. Tính
√ mơ đun của số phức z biết (1 + 2i)z = 3 + 4i. √4

A. |z| = 2 5.
B. |z| = 5.
C. |z| = 5.
D. |z| = 5.
!

x+1
Câu 12. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2016
2017
A.
.
B.
.
C.
.
D. 2017.
2018
2017
2018

Trang 1/11 Mã đề 1


Câu 13. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.

C. Khối tứ diện đều.

D. Khối bát diện đều.

Câu 14. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt

phẳng ACC 0 A0 bằng
ab
ab
1
1
.
B. √
.
C. 2
.
A. √
.
D. √
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 15. Phát biểu nào sau đây là sai?
A. lim qn = 1 với |q| > 1.
B. lim un = c (Với un = c là hằng số).
1
1
C. lim √ = 0.
D. lim k = 0 với k > 1.
n
n
!
!
!

4x
1
2
2016
Câu 16. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2016.
B. T =
.
C. T = 2017.
D. T = 1008.
2017
1
Câu 17. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 2 ≤ m ≤ 3.
C. 0 < m ≤ 1.
D. 0 ≤ m ≤ 1.
Câu 18. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.

B. (II) và (III).

C. (I) và (III).

D. (I) và (II).

Câu 19. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 0) và (2; +∞). B. (−∞; 2).

C. (0; +∞).

D. (0; 2).

Câu 20. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.

C. Khối tứ diện đều.

D. Khối bát diện đều.

Câu 21. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.

Câu 22.
bằng 1 là:
√ Thể tích của khối lăng√trụ tam giác đều có cạnh √
3
3
3
3
.
B.
.
C.
.
D. .
A.
12
4
2
4
2
4
3
Câu 23. Cho z là nghiệm của phương trình√ x + x + 1 = 0. Tính P = z + 2z − z

−1 − i 3
−1 + i 3
A. P = 2i.
B. P =
.
C. P = 2.
D. P =

.
2
2
Câu 24. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45√◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
10a3 3
A.
.
B. 40a3 .
C. 20a3 .
D. 10a3 .
3
[ = 60◦ , S O
Câu 25. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a. Khoảng cách từ O đến (S
√ BC) bằng


a 57
a 57
2a 57
A.
.
B. a 57.
C.
.
D.
.
19

17
19
Trang 2/11 Mã đề 1


2−n
Câu 26. Giá trị của giới hạn lim
bằng
n+1
A. 0.
B. 1.

C. −1.

D. 2.

Câu 27. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều.

C. Khối 12 mặt đều.

D. Khối 20 mặt đều.

Câu 28. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.

B. 3.


C. 2.

1
3|x−1|

= 3m − 2 có nghiệm duy

D. 1.

Câu 29. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 17 tháng.
B. 15 tháng.
C. 18 tháng.
D. 16 tháng.
Câu 30. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 31. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√ hình chóp S .ABCD với mặt

a2 5

11a2
a2 2
a2 7
.
B.
.
C.
.
D.
.
A.
8
16
32
4
Câu 32. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 64cm3 .
C. 48cm3 .
D. 84cm3 .
Câu 33. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. lim+ f (x) = lim− f (x) = +∞.
x→a

C. lim+ f (x) = lim− f (x) = a.
x→a

x→a


x→a

Câu 34.
Z Các khẳng định nào sau
Z đây là sai?
A.
Z
C.

x→a

D. f (x) có giới hạn hữu hạn khi x → a.
Z

!0

f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. B.
f (x)dx = f (x).
Z
Z
Z
k f (x)dx = k
f (x)dx, k là hằng số.
D.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.

Câu 35. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A

0
đến đường



√ thẳng BD bằng
abc b2 + c2
a b2 + c2
b a2 + c2
c a2 + b2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 36. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. 5.
B. .
C. 5.
5



D. 25.

Câu 37. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
A. 3.
B. 2.
C. 1.
D.
.
3
Trang 3/11 Mã đề 1


5
Câu 38. Tính lim
n+3
A. 0.
B. 2.
2n2 − 1

Câu 39. Tính lim 6
3n + n4
2
A. .
B. 0.
3

C. 1.

D. 3.

C. 1.

D. 2.

1
Câu 40. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. (−∞; −2] ∪ [−1; +∞). C. −2 ≤ m ≤ −1.
D. −2 < m < −1.
Câu 41. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Trục ảo.
C. Trục thực.
D. Đường phân giác góc phần tư thứ nhất.

x2 + 3x + 5
Câu 42. Tính giới hạn lim
x→−∞

4x − 1
1
1
B. .
C. 0.
D. 1.
A. − .
4
4
Câu 43. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 24 m.
B. 8 m.
C. 12 m.
D. 16 m.
Câu 44. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 4.
B. 6.
C. 3.
D. 8.
Câu 45. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e2 − 2; m = e−2 + 2.
C. M = e−2 + 1; m = 1.
D. M = e−2 + 2; m = 1.
1
Câu 46. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x

+
1
A. xy0 = ey + 1.
B. xy0 = −ey + 1.
C. xy0 = ey − 1.
D. xy0 = −ey − 1.
Câu 47. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 48. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 2.
C. 0, 4.
D. 0, 3.
un
Câu 49. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. −∞.
B. 0.
C. +∞.
D. 1.
Câu 50. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. .
B. 3.

C. .
D. 1.
2
2
Câu 51. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −3.
C. m = −2.

D. m = −1.
Trang 4/11 Mã đề 1


Câu 52. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
1
ab
ab
.
B. √
.
C. √
.
D. √
.
A. 2
2
a +b
2 a2 + b2

a2 + b2
a2 + b2
Câu 53. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {3; 5}.
C. {4; 3}.
1 − 2n
Câu 54. [1] Tính lim
bằng?
3n + 1
1
2
A. 1.
B. .
C. .
3
3

D. {5; 3}.

2
D. − .
3

Câu 55. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .

B. m < .
C. m ≤ .
D. m ≥ .
4
4
4
4
Câu 56. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = 3S h.
C. V = S h.
3
2

D. V = S h.

Câu 57. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể tích của khối chóp S .ABC√ theo a


a3
a3 5
a3 15
a3 15
A.
.
B.
.

C.
.
D.
.
3
25
5
25
Câu 58. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (1; 3; 2).
C. (2; 4; 3).
D. (2; 4; 4).
Câu 59. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp S .ABCD là

√ S H ⊥ (ABCD), S A =
3
3
2a
4a3
4a3 3
2a 3
.
B.
.
C.

.
D.
.
A.
3
3
3
3
Câu 60. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 4.
C. 3.
D. 5.
Câu 61. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 12.
C. ln 4.
D. ln 10.
Câu 62. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = R.

C. D = R \ {1}.

D. D = (0; +∞).

2

Câu 63. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 8.

B. 5.
C. 6.

D. 7.

Câu 64.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
B. 9.
C. 27.
D. 8.
A. 3 3.
Câu 65. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. 16π.
C. V = 4π.
D. 8π.
Câu 66. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 8 mặt.
D. 10 mặt.
1
Câu 67. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 2 ≤ m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 0 < m ≤ 1.
Trang 5/11 Mã đề 1



Câu 68. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 1.
B. 3.
C. 5.

D. 2.

−2x2

Câu 69. [2-c] Giá trị lớn nhất của hàm số y = xe
1
1
A. 3 .
B. √ .
2e
2 e

trên đoạn [1; 2] là
2
C. 3 .
e
!x
1
1−x
Câu 70. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. − log2 3.

B. 1 − log2 3.
C. − log3 2.

D.

1
.
e2

D. log2 3.

Câu 71. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. 1.
C. 0.
D. e2016 .

Câu 72. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a
a 38
3a 58
3a 38
.
B.

.
C.
.
D.
.
A.
29
29
29
29
Câu 73. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hồn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ơng A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ơng A hồn nợ.
100.1, 03
120.(1, 12)3
triệu.
B.
m
=
triệu.
A. m =
(1, 12)3 − 1
3
(1, 01)3
100.(1, 01)3
C. m =
triệu.
D.

m
=
triệu.
(1, 01)3 − 1
3
Z 1
Câu 74. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

A. 0.

B. 1.

C.

1
.
4

Câu 75. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. 2.
C. −1.

D.

1
.
2


D. 1.

Câu 76. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. .
D. 4.
8
4
2
Câu 77. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 30.
C. 12.
D. 20.
Câu 78. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 9 mặt.
C. 6 mặt.

D. 3 mặt.

Câu 79. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.

D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 80. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
A. −2.

B. −7.

C. −4.

Câu 81. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (−1; −7).
C. (2; 2).

D.

67
.
27

D. (1; −3).
Trang 6/11 Mã đề 1


1
Câu 82. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = −3.

C. m = −3, m = 4.
D. m = 4.
Câu 83. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. 2.
B. − .
C. .
2
2
Câu 84. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= +∞.
B. Nếu lim un = a > 0 và lim vn = 0 thì lim
vn !
un
C. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn

D. −2.

!
un
= −∞.
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
vn
Câu 85. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?

1
1
A. log2 a =
.
B. log2 a = loga 2.
C. log2 a =
.
D. log2 a = − loga 2.
log2 a
loga 2
Câu 86. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m > − .
B. − < m < 0.
C. m ≥ 0.
D. m ≤ 0.
4
4
Câu 87. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d song song với (P).
C. d nằm trên P hoặc d ⊥ P.
D. d ⊥ P.
Câu 88. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (1; +∞).

Câu 89. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng BD và S C bằng




a 6
a 6
a 6
B.
.
C.
.
D.
.
A. a 6.
2
3
6
Câu 90. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng

√M + m

A. 16.
B. 7 3.
C. 8 3.
D. 8 2.
x+2
Câu 91. Tính lim

bằng?
x→2
x
A. 0.
B. 3.
C. 1.
D. 2.
Câu 92. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 2.

B. 1.

C. 4.

D. 3.
Trang 7/11 Mã đề 1


Câu 93. Tính lim
x→1

A. 3.

x3 − 1
x−1


Câu 94. [1-c] Giá trị của biểu thức
A. −4.

C. +∞.

B. 0.
log7 16
log7 15 − log7

B. 2.

15
30

D. −∞.

bằng
C. −2.

D. 4.

Câu 95. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới
" đây?
!
5
5
;3 .
C. 2; .
D. [3; 4).

A. (1; 2).
B.
2
2
Câu 96. [1] Giá trị của biểu thức 9log3 12 bằng
A. 144.
B. 2.

C. 24.


ab.

D. 4.

Câu 97. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. 9.
B. 6.
C. .
D. .
2
2
Câu 98. Khối đa diện đều loại {4; 3} có số cạnh
A. 10.
B. 30.
C. 12.
D. 20.

Câu 99. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 12.
B. 4.
C. 10.
D. 11.
Câu 100. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp
√ phẳng vng góc với 3(ABCD).

√ S .ABCD là
3
3

a 2
a 3
a 3
A. a3 3.
B.
.
C.
.
D.
.
2
2
4
Câu 101. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:

A. 64cm3 .
B. 46cm3 .
C. 27cm3 .
D. 72cm3 .
Câu 102. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 6.
B. V = 5.
C. V = 3.
D. V = 4.
Câu 103. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 0.
C. 1.


4n2 + 1 − n + 2
Câu 104. Tính lim
bằng
2n − 3
3
A. .
B. 1.
C. +∞.
2
4x + 1
Câu 105. [1] Tính lim
bằng?
x→−∞ x + 1
A. −1.

B. −4.
C. 2.

D. 2.

D. 2.

D. 4.

Câu 106. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. 1.

B. 0.

C. +∞.

D. 2.

Câu 107. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả
bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 62.
C. Vơ số.
D. 64.
Trang 8/11 Mã đề 1


Câu 108. Tính lim

A. +∞.

cos n + sin n
n2 + 1
B. −∞.

C. 0.

Câu 109. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 6 mặt.
C. 3 mặt.

D. 1.
D. 4 mặt.

Câu 110. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Z 0
u (x)
B.
dx = log |u(x)| + C.
u(x)
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
2n + 1
3n + 2
1
B. .

2

Câu 111. Tính giới hạn lim
A. 0.

Câu 112. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = ln x − 1.

C.

2
.
3

C. y0 = 1 − ln x.

Câu 113. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Bốn mặt.
C. Hai mặt.
Câu 114. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 + 2e
A. m =
.
B. m =
.
C. m =

.
4 − 2e
4 − 2e
4e + 2

D.

3
.
2

D. y0 = 1 + ln x.
D. Ba mặt.
D. m =

1 − 2e
.
4e + 2

Câu 115. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 116. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 6510 m.
C. 1134 m.
D. 2400 m.

x+1
bằng
Câu 117. Tính lim
x→−∞ 6x − 2
1
1
1
A. .
B. 1.
C. .
D. .
6
2
3
!4x
!2−x
2
3
Câu 118. Tập các số x thỏa mãn


2
"
!
" 3 !
#
#
2
2
2

2
A. − ; +∞ .
B.
; +∞ .
C. −∞; .
D. −∞; .
3
5
3
5
Câu 119. Hàm số y = x +
A. 1.

1
có giá trị cực đại là
x
B. −1.

C. −2.

Câu 120. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 12.
C. 3.
Câu 121. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
B. − 2 .

C. − .
e
e
2e

D. 2.
D. 27.

D. −e.
Trang 9/11 Mã đề 1


Câu 122. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung
điểm cạnh√AB, biết S H ⊥ (ABCD).√Thể tích khối chóp S .ABCD là
4a3 3
a3
a3
2a3 3
.
B.
.
C.
.
D.
.
A.
3
3
3
6

Câu 123. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
d = 300 .
Câu 124. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
0
Độ dài cạnh bên CC = 3a. Thể tích V √của khối lăng trụ đã cho.


a3 3
3a3 3
3
3
A. V = 6a .
B. V =
.
C. V = 3a 3.
.
D. V =
2
2
x2 − 3x + 3
Câu 125. Hàm số y =
đạt cực đại tại
x−2
A. x = 3.
B. x = 0.
C. x = 1.
D. x = 2.
Câu 126. Xét hai câu sau
Z

Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.

B. Chỉ có (I) đúng.

C. Cả hai câu trên đúng. D. Cả hai câu trên sai.

Câu 127. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 64.
C. Vô số.
D. 62.
Câu 128. Tứ diện đều thuộc loại
A. {3; 4}.
B. {3; 3}.

C. {4; 3}.

D. {5; 3}.

Câu 129. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?

A. A(−4; 8).
B. A(−4; −8)(.
C. A(4; 8).
D. A(4; −8).
x
Câu 130. Tính diện tích hình phẳng giới hạn bởi các đường
√ y = xe , y = 0, x = 1.
3
1
3
A. .
B. 1.
C.
.
D. .
2
2
2

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1

3.


D

2.

1. A
B

C

4.
D

5.

6. A
8.

7. A
9.

C

10. A

11.

C

12.


13.

D

14.

D
C
B

15. A

16.

D

17. A

18.

D

19. A

20.

21.

B


23.

22.
C

25. A
27.

D

24.

C

26.

C

32.

33. A

34. A
B

38. A

39.

B


40.
D

43.
45. A

C

44.

C

46.

C

47.

B

48.

49.

B

50. A

51.


C
B

55.

D

61. A
63.

52.

D

54.

D

58. A

C

59.

D

56. A

C


57.

68.

D

42. A

41. A

66.

B

36.

C

37.

53.

D

30. A

31. A
35.


B

28.

C

29.

C

D

60.

B

62.

B

64. A
67. A

B
D

69.
1

D



70. A

71.

C
C

72.

D

73.

74.

D

75. A

76.

B

77.

79.

D


80. A

81. A
D

84.

85.

C

86. A

87.

C

88.

89.

D

90. A

91.

D


92.

93. A
B
C

B

105.

D
B
D

111.

98.

C

100.

C
D

104.

B

106.


B
C

108.

109.

110.

C
B

115.

D

B

112.

D

114.

D

116.

117. A


B

118. A

119.

C

120.

121.

C

122.

123.

C

124.

125.

C

126.

127.

129.

D

102.

C

101.

113.

B

96. A

99. A

107.

B

94. A

97.

103.

C


82.

83.

95.

B

D
C

2

C
B
D
C

128.

B

130.

B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×