Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (19)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (149.87 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Tính lim
x→1

A. −∞.

x3 − 1
x−1

B. +∞.

C. 3.

D. 0.

Câu 2. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m < 3.
C. m ≤ 3.
D. m > 3.
log 2x
Câu 3. [1229d] Đạo hàm của hàm số y =



x2
1 − 2 ln 2x
1 − 2 log 2x
1 − 4 ln 2x
1
A. y0 = 3
.
B. y0 =
.
C. y0 =
.
D. y0 = 3
.
3
3
x ln 10
x
2x ln 10
2x ln 10
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 4. [3-1214d] Cho hàm số y =
x+2
tam giác
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB

√ có độ dài bằng
A. 6.
B. 2.

C. 2 3.
D. 2 2.
Câu 5. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
2

Câu 6. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 5.
B. 6.
C. 7.
D. 8.
1
Câu 7. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. 2.
C. 1.
D. −2.
2
3
7n − 2n + 1
Câu 8. Tính lim 3
3n + 2n2 + 1
2
7
D. - .
A. 1.

B. 0.
C. .
3
3
Câu 9. [4-1246d] Trong tất cả √
các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 2.
B. 5.
C. 1.
D. 3.
Câu 10. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Khơng thay đổi.
B. Giảm đi n lần.
C. Tăng lên (n − 1) lần. D. Tăng lên n lần.

Câu 11. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vô số.
B. 62.
C. 64.
D. 63.
Câu 12. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (−∞; −1) và (0; +∞). C. (0; 1).
D. (−1; 0).


Câu 13. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là



3
πa 6
πa3 3
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6
3
2
6
Câu 14. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (−∞; 6, 5).
B. (4; +∞).
C. (4; 6, 5].
D. [6, 5; +∞).
Trang 1/10 Mã đề 1


Câu 15. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].

Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. 0.
C. 22016 .
D. e2016 .
1 − 2n
bằng?
Câu 16. [1] Tính lim
3n + 1
1
2
2
A. 1.
B. .
C. .
D. − .
3
3
3
Câu 17. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
A. a 2.
B.
.

C.
.
D. 2a 2.
2
4
Câu 18.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
B. 8.
C. 9.
D. 27.
A. 3 3.
! x3 −3mx2 +m
1
nghịch biến trên
Câu 19. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
khoảng (−∞; +∞)
A. m ∈ (0; +∞).
B. m , 0.
C. m ∈ R.
D. m = 0.
Câu 20. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng
√M + m

A. 8 2.
B. 7 3.
C. 16.
D. 8 3.

Câu 21. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 3.
C. 1.

D. 2.

d = 60◦ . Đường chéo
Câu 22. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





2a3 6
4a3 6
a3 6
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Câu 23. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.

A. y(−2) = 22.
B. y(−2) = 2.
C. y(−2) = −18.
D. y(−2) = 6.
Câu 24. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

A. β = a β .
B. aα bα = (ab)α .
C. aαβ = (aα )β .
D. aα+β = aα .aβ .
a
Câu 25. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
Câu 26. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Bốn mặt.
C. Hai mặt.

D. Một mặt.

Câu 27. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều. C. Khối 20 mặt đều.
D. Khối tứ diện đều.
1
Câu 28. [3-12217d] Cho hàm số y = ln

. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = ey + 1.
B. xy0 = −ey − 1.
C. xy0 = ey − 1.
D. xy0 = −ey + 1.
Trang 2/10 Mã đề 1



Câu 29. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 62.
C. 63.
D. 64.
Câu 30. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
! của A lên BC là
!
7
8
5
; 0; 0 .
C.
; 0; 0 .
D.
; 0; 0 .

A. (2; 0; 0).
B.
3
3
3
Câu 31. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
với
đáy

S
C
=
a
3. Thể
√ tích khối chóp S .ABC
√là


3
3
3
a 3
2a 6
a 6
a3 3
A.
.
B.

.
C.
.
D.
.
2
9
12
4
Câu 32. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ
√ min |z − 1 − i|.
√ thức |z − 1 + 3i| = 3. Tìm
A. 2.
B. 1.
C. 10.
D. 2.
Câu 33. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
B. 9.
C. 6.
D. .
A. .
2
2
Câu 34. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều. C. Khối tứ diện đều.
D. Khối lập phương.

Câu 35. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vuông
√ góc với đáy, S C = a 3. Thể tích khối chóp S 3.ABCD là

3
a 3
a
a3 3
3
A.
.
B. a .
C.
.
D.
.
3
3
9
Câu 36. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B.
.
C. a3 .

D.
.
A.
24
6
12
Câu 37. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 22.

ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e

C. S = 24.

D. S = 135.

Câu 38. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Chỉ có (II) đúng.

C. Chỉ có (I) đúng.


Câu 39. Phát biểu nào sau đây là sai?
A. lim qn = 1 với |q| > 1.
1
C. lim k = 0 với k > 1.
n

B. lim un = c (Với un = c là hằng số).
1
D. lim √ = 0.
n

Câu 40. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.
B. Hình lăng trụ.
C. Hình chóp.

D. Cả hai đều sai.

D. Hình tam giác.
Trang 3/10 Mã đề 1


2x + 1
x+1
B. 2.

Câu 41. Tính giới hạn lim

x→+∞


A. −1.

C.

1
.
2

D. 1.

Câu 42. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
A. 82.

B. 96.

Câu 43. [1] Biết log6
A. 36.



a = 2 thì log6 a bằng
B. 4.

Câu 44.√Thể tích của tứ diện đều √
cạnh bằng a
3
3
a 2
a 2
.

B.
.
A.
12
6
x−3
Câu 45. [1] Tính lim
bằng?
x→3 x + 3
A. 0.
B. 1.

8
x

C. 64.

D. 81.

C. 6.

D. 108.


a3 2
C.
.
4



a3 2
D.
.
2

C. +∞.

D. −∞.

Câu 46. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Khơng có.
C. Có hai.
D. Có một.
Câu 47. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 10.
B. 12.
C. 3.
D. 27.
cos n + sin n
Câu 48. Tính lim
n2 + 1
A. 0.
B. 1.
C. −∞.
D. +∞.
Z 1
Câu 49. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b

0

1
1
A. .
B. 0.
C. .
D. 1.
2
4
Câu 50. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 5 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 6 đỉnh, 6 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
x−3 x−2 x−1
x
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (2; +∞).
C. (−∞; 2].
D. (−∞; 2).
Câu 51. [4-1213d] Cho hai hàm số y =

Câu 52. Nhị thập diện đều (20 mặt đều) thuộc loại

A. {3; 4}.
B. {3; 5}.
C. {4; 3}.

D. {5; 3}.

Câu 53. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 5
a3 15
a3
a3 15
A.
.
B.
.
C.
.
D.
.
25
25
3
5
Câu 54. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d nằm trên P.
C. d nằm trên P hoặc d ⊥ P.
D. d ⊥ P.

Câu 55. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Trang 4/10 Mã đề 1


log 2x

x2
1 − 2 ln 2x
1 − 4 ln 2x
1
A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.
3
x ln 10
2x ln 10
2x ln 10
!4x
!2−x
2
3
Câu 57. Tập các số x thỏa mãn



3
2
"
!
#
"
!
2
2
2
A. − ; +∞ .
B. −∞; .
C.
; +∞ .
3
3
5
Câu 56. [3-1229d] Đạo hàm của hàm số y =

D. y0 =

1 − 2 log 2x
.
x3

#
2
D. −∞; .
5


Câu 58. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục ảo.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.
Câu 59. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp 4 lần.
C. Tăng gấp đơi.
D. Tăng gấp 8 lần.
Câu 60. Tính lim
x→2

A. 2.

x+2
bằng?
x
B. 0.

C. 3.

D. 1.

Câu 61. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Hai khối chóp tứ giác.

D. Một khối chóp tam giác, một khối chóp ngữ giác.
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m = 4.
D. m ≤ 0.

Câu 62. [1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m > 4.

B. m < 0.

Câu 63. Khối đa diện đều loại {5; 3} có số đỉnh
A. 20.
B. 12.

C. 8.

D. 30.

1 + 2 + ··· + n
n3
2
1
A. +∞.
B. .
C. .
D. 0.
3
3

x−2 x−1
x
x+1
Câu 65. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [−3; +∞).
B. (−∞; −3].
C. (−3; +∞).
D. (−∞; −3).
2

2

2

Câu 64. [3-1133d] Tính lim

Câu 66. Cho hai hàm y = f (x), y = g(x)
Z có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =

g0 (x)dx.
Z
Z
0
B. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.

Trang 5/10 Mã đề 1


!
x+1
Câu 67. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
2017
4035
.

B. 2017.
C.
.
D.
.
A.
2018
2017
2018
Câu 68. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Năm cạnh.
C. Bốn cạnh.
D. Ba cạnh.
Câu 69. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 20 .(3)20
C 40 .(3)10
C 10 .(3)40
C 20 .(3)30
A. 50 50 .
B. 50 50 .
C. 50 50 .
D. 50 50 .
4
4
4
4

Câu 70. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; −8)(.
B. A(4; −8).
C. A(−4; 8).
D. A(4; 8).
Câu 71. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 72. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. n lần.
C. 3n3 lần.
D. n2 lần.
Câu 73. Biểu thức nào sau đây khơng có nghĩa
A. (−1)−1 .
B. 0−1 .

C.


D. (− 2)0 .


−1.

−3

Câu 74. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 75. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 8 mặt.
C. 10 mặt.

D. 4 mặt.

Câu 76. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n3 lần.
C. n3 lần.
D. 2n2 lần.
Câu 77. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
D.
f (x)dx = f (x).

f (x)dx = F(x) + C.

Câu 78. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.

B. 2.
C. 1.

D. 0.

Câu 79. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b, AA = c. Khoảng cách từ điểm A
0
đến đường



√ thẳng BD bằng
a b2 + c2
c a2 + b2
abc b2 + c2
b a2 + c2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 80. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.

B. {2}.
C. {5}.
D. {5; 2}.
0

0

0

0

0

Trang 6/10 Mã đề 1


Câu 81. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
.
C. 68.
A. 5.
B.
D. 34.
17
4

Câu 82. Tìm m để hàm số y = x − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 1.
B. m > 0.
C. m > −1.
D. m ≥ 0.
Câu 83. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
; +∞ .
B. −∞; − .
C. − ; +∞ .
A.
2
2
2

!
1
D. −∞; .
2

Câu 84. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2

B. 3 − 4 2.
C. 3 + 4 2.
A. −3 − 4 2.



D. −3 + 4 2.

Câu 85. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 5.
C. 0, 2.
D. 0, 3.
Câu 86. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số đồng biến trên khoảng (1; 2).
Câu 87. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vuông góc
với (S BC).

√ là

√ Thể tích khối chóp S 3.ABC
3
a 3
a3 3
a3 2
a 3
.
B.
.
C.
.
D.

.
A.
12
4
6
12
2
Câu 88. Tính
√ (1 + 2i)z = 3 + 4i.
√4
√ mô đun của số phức z biết
B. |z| = 2 5.
C. |z| = 5.
D. |z| = 5.
A. |z| = 5.
Câu 89. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
4a3 3
a3 3
5a3 3
2a 3
.
B.
.

C.
.
D.
.
A.
3
3
2
3
Câu 90. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 11 cạnh.
C. 10 cạnh.
D. 12 cạnh.
Câu 91. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 6.
B. 2a 6.
C. a 3.
D.
.
2
Câu 92. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. Vô nghiệm.
B. 3 nghiệm.

C. 2 nghiệm.
D. 1 nghiệm.
Câu 93. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 13 năm.
C. 11 năm.
D. 10 năm.
Câu 94. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
! đề nào dưới đây đúng?
!
1
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số đồng biến trên khoảng ; 1 .
3
!3
1
C. Hàm số nghịch biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng (1; +∞).
3
Trang 7/10 Mã đề 1




x2 + 3x + 5
x→−∞

4x − 1
1
B. .
4

Câu 95. Tính giới hạn lim
A. 1.

1
D. − .
4

C. 0.

1
Câu 96. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 < m ≤ 3.
C. 2 ≤ m ≤ 3.
D. 0 ≤ m ≤ 1.
Câu 97. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối tứ diện đều.

C. Khối 12 mặt đều.

Câu 98. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 20.

C. 8.
Z 2
ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
Câu 99. Cho
x2
1
A. −3.
B. 1.
C. 0.

D. Khối bát diện đều.
D. 30.

D. 3.

Câu 100. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. 72.
C. 0, 8.

D. −7, 2.
x+3
Câu 101. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 2.
B. 3.
C. Vơ số.

D. 1.
Câu 102. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 3 mặt.
C. 9 mặt.
D. 6 mặt.
Câu 103. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m > .
C. m ≥ .
D. m < .
4
4
4
4
Câu 104. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. lim+ f (x) = lim− f (x) = a.
x→a
x→a
x→a
C. f (x) có giới hạn hữu hạn khi x → a.
D. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a


Câu 105. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a bằng
1
1
A. .
B. − .
C. 2.
D. −2.
2
2
Câu 106. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng



a 3
2a 3
a 3
A.
.
B.
.
C.
.
D. a 3.
2
2
3
Câu 107. Dãy số nào có giới hạn bằng 0?
!n

!n
−2
6
n3 − 3n
2
A. un = n − 4n.
B. un =
.
C. un =
.
D. un =
.
3
5
n+1
2

Câu 108. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là 3, phần ảo là 4.
Câu 109. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 9 mặt.
C. 4 mặt.
Câu 110. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 − 2
A. un =

.
B.
u
=
.
n
5n + n2
5n − 3n2

C. un =

n2 − 3n
.
n2

D. 3 mặt.
D. un =

n2 + n + 1
.
(n + 1)2
Trang 8/10 Mã đề 1


1 − n2
Câu 111. [1] Tính lim 2
bằng?
2n + 1
1
1

A. .
B. 0.
C. .
3
2
Câu 112. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

1
D. − .
2

(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.

B. 1.

C. 3.

D. 0.

Câu 113. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

a3 6
a3 3
a3 6

a3 6
.
B.
.
C.
.
D.
.
A.
24
48
24
8
ln x p 2
1
Câu 114. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
1
8
8
B. .
C. .
D. .
A. .
9
9
3

3
!2x−1
!2−x
3
3


Câu 115. Tập các số x thỏa mãn
5
5
A. (+∞; −∞).
B. (−∞; 1].
C. [3; +∞).
D. [1; +∞).
d = 300 .
Câu 116. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V của khối lăng trụ đã cho. 3 √

a3 3
3a 3
A. V =
C. V =
.
B. V = 3a3 3.
.
D. V = 6a3 .
2
2

Câu 117. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó
Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số
lượng vi khuẩn đạt 100.000 con?
A. 20.
B. 24.
C. 3, 55.
D. 15, 36.
Câu 118. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 4.

C. 6.

D. 8.

Câu 119. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).

B. (II) và (III).

Câu 120. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = ln x − 1.
B. y0 = 1 − ln x.

C. Cả ba mệnh đề.


D. (I) và (III).

C. y0 = x + ln x.

D. y0 = 1 + ln x.

Câu 121.
Cho hàm số f (x),
Z
Z g(x) liên tục
Z trên R. Trong các
Z mệnh đề sau, mệnh
Z đề nào
Z sai?
A.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
B.
f (x)g(x)dx =
f (x)dx g(x)dx.
Z
Z
Z
Z
Z
C.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
D.

( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Trang 9/10 Mã đề 1


2mx + 1
1
Câu 122. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. 1.
B. 0.
C. −2.
D. −5.
Câu 123. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)

hợp với đáy
√ một góc 60 . Thể tích
√khối chóp S .ABCD là

3
3

2a 3
a 3
a3 3
3
A.
.

B.
.
C. a 3.
D.
.
3
3
6
2
Câu 124. Cho z là nghiệm của phương trình
= z4 + 2z3 − z
√ x + x + 1 = 0. Tính P √
−1 − i 3
−1 + i 3
A. P = 2.
B. P =
.
C. P =
.
D. P = 2i.
2
2
Câu 125. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng BD và√S C bằng


a 6
a 6
a 6

A.
.
B.
.
C. a 6.
D.
.
2
6
3
Câu 126. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 1).
B. A0 (−3; 3; 3).
C. A0 (−3; −3; −3).
D. A0 (−3; −3; 3).
Câu 127. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Thập nhị diện đều. B. Bát diện đều.
C. Nhị thập diện đều. D. Tứ diện đều.
Câu 128. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 10.

C. 12.

D. 30.

x3 −3x+3

Câu 129. [2-c] Giá trị lớn nhất của hàm số f (x) = e

trên đoạn [0; 2] là
2
5
A. e .
B. e.
C. e .
D. e3 .
Câu 130. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. [1; 2].
C. (−∞; +∞).

D. [−1; 2).

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
C

1.

2. A

3. A
5.


B

7.

D

4.

C

6.

C

8.

9. A

10.

11.

B

12.

13.

B


14.

15.

B

16.

17.

B

18. A

19.

D

B
D
C
D
C

20.

D

22.


21. A
23.

C

24. A

25. A

26.

27. A

28.

29.

D

C

33.

32.
D

35.

C


30.

B

31.

B

C

D
B

34.

D

36.

D

37. A

38.

39. A

40.


D
D

41.

B

42.

43.

B

44. A

45. A

B

46.

47.

C

48. A

C

49. A


50.

B

51. A

52.

B

53.

B

55.

54.
56. A

C

58.

57. A
59.
61.

D


67.

D

60. A

B

63. A
65.

C

B
D
1

62.

C

64.

C

66.

D

68.


D


70.

69. A
71.
73.

D

D

72. A

B

74. A

75. A

76. A

77.

B

78.


79.

B

80.

C

81.

B

82.

C

83.

84.

C
D

85.

D

86.

D

B
D

88.

87. A
89.

90.

C

91. A

92.

C

93. A

94.

C

C

95.
97.

D


96.

B

98. A

B

102.

103. A

B

104. A
D

105.
107.

D

100.

99. A
101.

B


106.

B

108.

C
B

110. A

111.

112. A

113. A

114. A

115.

D
D

116.

C

117.


118.

C

119. A

120.
122.

D
B

124. A
126.

D

121.

B

123.

B

125.

B

127. A


B

128.

C

130.

C

129.

2

C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×