Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (19)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.47 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 3 mặt.
D. 9 mặt.
Câu 2. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 0.
B. −6.
C. −3.
D. 3.
2x + 1
Câu 3. Tính giới hạn lim
x→+∞ x + 1
1
A. 2.
B. .
C. 1.
D. −1.
2
q
Câu 4. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i


h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 2].
C. m ∈ [0; 1].
D. m ∈ [−1; 0].
Câu 5. Phát biểu nào sau đây là sai?
1
B. lim √ = 0.
n

A. lim qn = 1 với |q| > 1.
1
= 0 với k > 1.
nk
Câu 6. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 10.

D. lim un = c (Với un = c là hằng số).

C. lim

C. 6.

D. 12.

Câu 7. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm
3
dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6 giây

2
cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 1587 m.
B. 25 m.
C. 387 m.
D. 27 m.
Câu 8. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d nằm trên P hoặc d ⊥ P.
C. d ⊥ P.
D. d song song với (P).
Câu 9. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 5.
C. 0, 4.
D. 0, 2.
Câu 10. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.

C. Khối bát diện đều.

D. Khối tứ diện đều.

Câu 11. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).

x2 − 5x + 6
Câu 12. Tính giới hạn lim
x→2
x−2
A. 5.
B. 1.
−2x2

Câu 13. [2-c] Giá trị lớn nhất của hàm số y = xe
1
1
A. 2 .
B. √ .
e
2 e

C. 0.

D. −1.

trên đoạn [1; 2] là
2
C. 3 .
e

D.

1
.
2e3

Trang 1/10 Mã đề 1


Câu 14. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 24 m.
B. 12 m.
C. 16 m.
D. 8 m.
Câu 15. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 25 triệu đồng.
B. 2, 20 triệu đồng.
C. 2, 22 triệu đồng.
D. 3, 03 triệu đồng.
Câu 16. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Hai đường phân giác y = x và y = −x của các góc tọa độ.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục ảo.
D. Trục thực.
Câu 17. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (−∞; 6, 5).
C. (4; +∞).

D. (4; 6, 5].


Câu 18. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 1202 m.
C. 6510 m.
D. 1134 m.
Câu 19. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
23
1079
1637
1728
.
B.
.
C.
.
D.
.
A.
4913
68
4913
4913
Câu 20. [1] Đạo hàm của làm số y = log x là
1
1
ln 10
1
A.

.
B. y0 = .
C. y0 =
.
D. y0 =
.
10 ln x
x
x
x ln 10
Câu 21. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 18 lần.
D. Tăng gấp 3 lần.
Câu 22. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
log(mx)
Câu 23. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0.
C. m ≤ 0.
D. m < 0 ∨ m = 4.


Câu 24. Tìm


√ giá trị lớn nhất của√hàm số y = x + 3 + 6 − x
A. 2 + 3.
B. 2 3.
C. 3.
D. 3 2.
Câu 25. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (−∞; 2).

C. (−∞; 0) và (2; +∞). D. (0; +∞).

Câu 26. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. 2020.
C. log2 13.
D. 13.
Câu 27. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 30.

C. 20.

D. 10.

d = 300 .
Câu 28. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên CC = 3a. Thể tích V của
√ khối lăng trụ đã cho.


3

3a 3
a3 3
3
3
A. V = 3a 3.
B. V =
.
C. V = 6a .
D. V =
.
2
2
Trang 2/10 Mã đề 1


Câu 29. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 11 năm.
C. 12 năm.
D. 13 năm.
Câu 30. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.

C. Khối tứ diện đều.


D. Khối bát diện đều.

Câu 31. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
B. −7.
C. −4.
D. −2.
A.
27
1 + 2 + ··· + n
Câu 32. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. lim un = 1.
B. lim un = .
2
C. lim un = 0.
D. Dãy số un khơng có giới hạn khi n → +∞.
Câu 33. Tứ diện đều thuộc loại
A. {3; 3}.
B. {4; 3}.

C. {5; 3}.

D. {3; 4}.

Câu 34. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng

người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 21.
C. 24.
D. 23.
Câu 35. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 8.

C. 6.

D. 12.

Câu 36. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. − < m < 0.
C. m ≥ 0.
D. m ≤ 0.
A. m > − .
4
4

Câu 37. √Xác định phần ảo của số
phức
z
=
(

2 + 3i)2

A. −6 2.
B. 6 2.
C. 7.
D. −7.
Câu 38. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 30.

C. 12.

3
2
Câu 39. Giá
√ trị cực đại của hàm số y =
√ x − 3x − 3x + 2

A. 3 + 4 2.
B. −3 − 4 2.
C. −3 + 4 2.

D. 20.

D. 3 − 4 2.

Câu 40. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
5
23

13
9
A. − .
B. −
.
C.
.
D.
.
16
100
100
25
Câu 41. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)

hợp với đáy
√ một góc 60 . Thể tích
√khối chóp S .ABCD là 3 √
3
3

2a 3
a 3
a 3
A.
.
B.
.
C.
.

D. a3 3.
3
3
6
Câu 42. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(−4; 8).
C. A(4; 8).
D. A(−4; −8)(.
Câu 43. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m > 0.
C. m < 0.

D. m = 0.
Trang 3/10 Mã đề 1


Câu 44. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. 1.
C. 2.

D. −1.

Câu 45. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ tứ giác đều là hình lập phương.

Câu 46. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e2 − 2; m = e−2 + 2.
B. M = e−2 − 2; m = 1.
−2
C. M = e + 1; m = 1.
D. M = e−2 + 2; m = 1.
2

Câu 47. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log3 2.
B. 3 − log2 3.
C. 2 − log2 3.

D. 1 − log2 3.

1
Câu 48. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = 4.
B. m = −3, m = 4.
C. m = −3.
D. −3 ≤ m ≤ 4.
!
5 − 12x
Câu 49. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 1.

B. 3.
C. Vơ nghiệm.
D. 2.
Câu 50. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
Thể tích khối chóp S .ABC√là
vng góc√với đáy và S C = a 3. √

a3 6
a3 3
a3 3
2a3 6
.
B.
.
C.
.
D.
.
A.
9
12
4
2
Câu 51. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = 0.
C. x = −5.
D. x = −2.





− 3m + 4 = 0 có nghiệm
3
3
C. 0 ≤ m ≤ .
D. 0 < m ≤ .
4
4



x = 1 + 3t




Câu 53. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là












x
=
1
+
7t
x
=
1
+
3t
x
=
−1
+
2t
x = −1 + 2t

















A. 
.
B. 
C. 
y=1+t
y = 1 + 4t .
y = −10 + 11t . D. 
y = −10 + 11t .

















z = 1 + 5t
z = 1 − 5t
z = −6 − 5t
z = 6 − 5t
Câu 52. [12215d] Tìm m để phương trình 4 x+
9
A. m ≥ 0.
B. 0 ≤ m ≤ .
4

1−x2

− 4.2 x+

1−x2

Câu 54. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = ln 10.

B. f 0 (0) = 1.

C. f 0 (0) =

Câu 55. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.

B. m > −1.
C. m > 1.

1
.
ln 10

D. f 0 (0) = 10.
D. m > 0.

Câu 56. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 0).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng (0; 1).
Trang 4/10 Mã đề 1


Câu 57. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Năm mặt.
C. Bốn mặt.

D. Ba mặt.

Câu 58. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng (S AB). Thiết diện của
√ hình chóp S .ABCD với
√tích là

√mặt phẳng (AIC) có diện
a2 2
a2 7
a2 5
11a2
.
B.
.
C.
.
D.
.
A.
32
4
8
16
9x
Câu 59. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. 1.
B. −1.
C. 2.
D. .
2
Câu 60. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là



a3 3
a3 3
a3
a3 3
A.
.
B.
.
C.
.
D.
.
4
12
4
8
1
Câu 61. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. (−∞; −2) ∪ (−1; +∞). C. −2 ≤ m ≤ −1.
D. −2 < m < −1.
log(mx)
= 2 có nghiệm thực duy nhất
Câu 62. [3-1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0 ∨ m = 4.
B. m < 0.

C. m < 0 ∨ m > 4.
D. m ≤ 0.
Câu 63. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 22016 .
C. 0.
D. 1.
Câu 64. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. m ≤ 3.
C. −2 ≤ m ≤ 2.
D. −3 ≤ m ≤ 3.
Câu 65. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
của AD, biết
a 5. Thể tích khối chóp √
S .ABCD là
√ S H ⊥ (ABCD), S A =
3
3
3
2a 3
2a
4a 3
4a3
A.
.
B.
.

C.
.
D.
.
3
3
3
3
Câu 66. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
8
5
7
; 0; 0 .
B.
; 0; 0 .
C.
; 0; 0 .
D. (2; 0; 0).
A.
3
3
3
log2 240 log2 15

+ log2 1 bằng
log3,75 2 log60 2

B. 1.
C. −8.

Câu 67. [1-c] Giá trị biểu thức
A. 4.

Câu 68. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) có giá trị lớn nhất trên K.

D. 3.

B. f (x) liên tục trên K.
D. f (x) xác định trên K.

Câu 69. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. 4 − 2 ln 2.
C. −2 + 2 ln 2.

D. 1.

Câu 70. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có một.
C. Có hai.
D. Có vơ số.
Trang 5/10 Mã đề 1



Câu 71. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là


A. 6, 12, 24.
B. 8, 16, 32.
C. 2, 4, 8.
D. 2 3, 4 3, 38.
Câu 72. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
D. .
A. 3.
B. 1.
C. .
2
2
1 − xy
Câu 73. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



9 11 − 19
18 11 − 29
2 11 − 3

9 11 + 19
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
A. Pmin =
9
9
21
3
Câu 74. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 17 tháng.
C. 15 tháng.
D. 18 tháng.
Câu 75. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
ab
1
.
B. √
.
C. 2
.
D.

.
A. √

a + b2
a2 + b2
2 a2 + b2
a2 + b2
1
Câu 76. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 4.
B. 1.
C. 2.
D. 3.

Câu 77. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới đây?
"
!
5
5
A.
;3 .
B. [3; 4).
C. (1; 2).
D. 2; .
2
2

Câu 78. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m ≤ 3.
C. m < 3.
D. m > 3.
Câu 79. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. 4.
B. .
C. .
D. .
4
8
2
Câu 80. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 8.
C. 10.
D. 6.
[ = 60◦ , S A ⊥ (ABCD).
Câu 81. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối chóp S .ABCD là

3
3
3


a 2
a 2
a
3
A.
.
B.
.
C. a3 3.
D.
.
4
12
6
Câu 82.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) − g(x)]dx =

A.

f (x)dx −

g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.

Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
B.

Trang 6/10 Mã đề 1


Z
D.

[ f (x) + g(x)]dx =

Z

f (x)dx +

Z
g(x)dx, với mọi f (x), g(x) liên tục trên R.

Câu 83. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.

C. Khối bát diện đều.

D. Khối 12 mặt đều.


Câu 84. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
A.
.
B. 1.
C. 2.
D. 3.
3
Câu 85. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 8 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.
!
1
1
1
Câu 86. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5

A. +∞.
B. 2.
C. .
D. .
2
2
[ = 60◦ , S O
Câu 87. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc

√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S BC) bằng

a 57
2a 57
a 57
D.
A.
.
B.
.
C. a 57.
.
19
17
19
Câu 88. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 10.
C. 8.

D. 12.
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 89. Giá trị lớn nhất của hàm số y =
m−x
3
A. −5.
B. 0.
C. 1.
D. −2.
Câu 90. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (1; 2).
B. (−∞; +∞).
C. [−1; 2).

D. [1; 2].

Câu 91. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là 4.
B. Phần thực là 3, phần ảo là −4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là 3, phần ảo là 4.
n−1
Câu 92. Tính lim 2
n +2
A. 2.
B. 3.
C. 0.
D. 1.

Câu 93. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 6
a 2
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
48
16
24
48
1 − n2
Câu 94. [1] Tính lim 2
bằng?
2n + 1
1
1
1

A. .
B. 0.
C. − .
D. .
3
2
2
Câu 95. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x−2 y+2 z−3
x y−2 z−3
A.
=
=
.
B. =
=

.
2
2
2
2
3
−1
x−2 y−2 z−3
x y z−1
C.
=
=
.
D. = =
.
2
3
4
1 1
1
Trang 7/10 Mã đề 1


log 2x

Câu 96. [1229d] Đạo hàm của hàm số y =
x2
1 − 2 ln 2x
1 − 4 ln 2x
1

1 − 2 log 2x
A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.
D. y0 =
.
3
x ln 10
2x ln 10
2x ln 10
x3

Câu 97. Thể tích của khối lập phương có cạnh bằng a 2 √


2a3 2
A. V = 2a3 .
B. V = a3 2.
C.
.
D. 2a3 2.
3
3
2
Câu 98. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x + (m√
+ 1)2 x trên [0; 1] bằng 2√
A. m = ±1.

B. m = ±3.
C. m = ± 3.
D. m = ± 2.
Câu 99. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
4a3 3
a3 3
5a3 3
2a 3
.
B.
.
C.
.
D.
.
A.
3
3
2
3
Câu 100. Thể tích của khối lăng
√ trụ tam giác đều có cạnh√bằng 1 là:


3
3
3
3
A. .
B.
.
C.
.
D.
.
4
12
4
2
Câu 101. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. Vô nghiệm.
B. 1 nghiệm.
C. 2 nghiệm.
D. 3 nghiệm.
Câu 102. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.
C. V = 3S h.
D. V = S h.
3
2


Câu 103. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3
a 6
a3 6
a3 2
a 6
.
B.
.
C.
.
D.
.
A.
6
36
18
6
x
Câu 104.
√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
3
3
1
.

B. .
C. 1.
D. .
A.
2
2
2
Câu 105. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a

x→a

Câu 106. [1] Giá trị của biểu thức 9
A. 24.
B. 4.

log3 12

x→a

D. lim f (x) = f (a).

C. f (x) có giới hạn hữu hạn khi x → a.

x→a


bằng
C. 2.

D. 144.
!x

1

9
C. − log2 3.

D. − log3 2.

C. 7.

D. 0.

Câu 107. [2] Tổng các nghiệm của phương trình 31−x = 2 +
A. log2 3.

B. 1 − log2 3.

Câu 108. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 9.

B. 5.

Câu 109. Trong các mệnh đề dưới đây, mệnh đề nào sai?

!
un
A. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
C. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
Trang 8/10 Mã đề 1


!
un
D. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
Câu 110. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính
.ABC theo a

√ thể tích của khối chóp 3S√
a 5
a3
a3 15
a3 15
.
B.

.
C.
.
D.
.
A.
5
25
3
25
Câu 111. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (2; +∞).
C. (0; 2).
D. R.
Câu 112. Dãy số nào sau đây có giới hạn khác 0?
sin n
1
A.
.
B. √ .
n
n

C.

n+1
.
n


Câu 113.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
0dx = C, C là hằng số.

A.
Z
C.

dx = x + C, C là hằng số.

Câu 114. Tính lim
A. 1.

2n2 − 1
3n6 + n4
B. 2.

B.
Z
D.

xα dx =

D.

1
.
n


xα+1
+ C, C là hằng số.
α+1

1
dx = ln |x| + C, C là hằng số.
x

C. 0.

D.

2
.
3

Câu 115.
√ Thể tích của tứ diện đều
√cạnh bằng a

a3 2
a3 2
a3 2
A.
.
B.
.
C.
.
6

12
2
Câu 116. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 8 mặt.
C. 9 mặt.

D. 6 mặt.

Câu 117. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 2.
B. +∞.

D. 0.

C. 1.

Câu 118. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {3; 3}.


a3 2
D.
.
4

D. {4; 3}.


Câu 119. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
!
1
C. Hàm số nghịch biến trên khoảng ; 1 .
3

!
1
B. Hàm số nghịch biến trên khoảng −∞; .
! 3
1
D. Hàm số đồng biến trên khoảng ; 1 .
3

Câu 120. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp
√ phẳng vng góc với 3(ABCD).

√ S .ABCD là
3
3

a 2
a 3
a 3
A. a3 3.
B.

.
C.
.
D.
.
2
2
4
Câu 121. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
Câu 122. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. (−∞; −3].
B. [−3; 1].
C. [1; +∞).
D. [−1; 3].
Trang 9/10 Mã đề 1



Câu 123. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là √
3

a3 3
a3

a 3
.
B.
.
C.
.
D. a3 3.
A.
12
3
4
Câu 124. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 34.
B. 5.
C. 68.
D.
.
17
Câu 125. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {5; 3}.
C. {3; 4}.
D. {4; 3}.
Câu 126. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức

P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 12.
B. 27.
C. 18.
D.
.
2
Câu 127. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
.
C. 2a 2.
.
B.
D.
A. a 2.
2
4
Câu 128. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Khơng thay đổi.
B. Giảm đi n lần.
C. Tăng lên (n − 1) lần. D. Tăng lên n lần.
mx − 4

đạt giá trị lớn nhất bằng 5 trên [−2; 6]
Câu 129. Tìm m để hàm số y =
x+m
A. 67.
B. 34.
C. 26.
D. 45.


d = 90 , ABC
d = 30 ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 130. Cho hình chóp S .ABC có BAC
(ABC). Thể

√là
√ tích khối chóp S .ABC
3
3
3

a 3
a 3
a
2
.
B.
.
C. 2a2 2.
.
A.

D.
24
12
24
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
C

1.

C

2.

3. A

4.

D

5. A

6.


D

7.

D

8.

9. A
D

11.
13. A

B

10.

D

12.

D
C

14.

15.

16. A


C

17.

D

18.

19.

D

20.

D

22.

D

24.

D

21. A
23.

D
C


25.

28.
D

32.

33. A
C

B

36. A

B

39.
41.

D

34. A

35.
37.

B

30.


C

31.

C

26.

27. A
29.

C

C

38.
C

40.

B

42.

B

43. A

C


44. A

45.

C

46.

B

47.

C

48.

B

49. A

50.

B

51. A

52.
D


53.
55.

54. A
56.

B
D

57.

D

58.

C

60.

59. A
61.

C

62. A

63.

C


64.

65.
67.

C

D
C
1

D
D

66.

B

68.

B


69. A

70.

C

71. A


72.

C

73.

D

74. A

75.

D

76.

77. A
79.

B

78. A
80.

B

B

81. A


82.

C

83. A

84.

C

85.

D

86.

87. A
89.

B
C

88.
B

90.

91. A


92.

C
C

93.

D

94.

95.

D

96. A

97.

D

98. A

99.

C

100.

101.


C

102. A

103.

C

104.

105.

D

110.

D

111.

C

108. A

C

109.

C


106.

D

107.

B

C

D

112.

C

113.

B

114.

C

115.

B

116.


C

117.

D

119.

118.

C

120.

121. A
123.

B

122.

C
B
D

124.

B


125. A

126.

127.

B

128.

129.

B

130.

2

C
B
D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×