Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (110)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (156.1 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử của
Câu 1. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
S bằng
A. 3.
B. 2.
C. 5.
D. 4.
Câu 2. Cho z là nghiệm của phương trình √x2 + x + 1 = 0. Tính P = z4 + 2z3 − z

−1 + i 3
−1 − i 3
A. P = 2.
B. P =
.
C. P = 2i.
D. P =
.
2


2
Câu 3. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
.
B. a 6.
.
D.
.
C.
A.
3
6
2
Câu 4. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 20.
C. 12.
D. 30.
Câu 5.
mệnh đề sau, mệnh
Z Cho hàm số f (x),
Z g(x) liên
Z tục trên R. Trong các Z
Z đề nào sai?

A.
f (x)g(x)dx =
f (x)dx g(x)dx.
B.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Z
Z
Z
Z
Z
Z
C.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
D.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Câu 6. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 3.
B. 12.
C. 27.

D. 10.

Câu 7. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.

B. log2 a = − loga 2.
C. log2 a =
.
D. log2 a = loga 2.
log2 a
loga 2
a
1
Câu 8. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 2.
B. 4.
C. 7.
D. 1.


Câu 9. [12215d] Tìm m để phương trình 4 x+
3
9
B. 0 ≤ m ≤ .
A. 0 ≤ m ≤ .
4
4

1−x2



− 3m + 4 = 0 có nghiệm

3
C. 0 < m ≤ .
D. m ≥ 0.
4

− 4.2 x+

1−x2

2

2

Câu 10. [3-c] Giá trị nhỏ nhất và giá√trị lớn nhất của hàm √
số f (x) = 2sin x + 2cos x √
lần lượt là
A. 2 và 3.
B. 2 và 2 2.
C. 2 2 và 3.
D. 2 và 3.
Câu 11. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn

C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
D. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
Câu 12. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 1134 m.
C. 1202 m.
D. 6510 m.
Trang 1/11 Mã đề 1


Câu 13. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 25 triệu đồng.
D. 2, 20 triệu đồng.
Câu 14. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ Thể tích khối chóp S 3.ABC
√ là



3
a 3
a3 3
a3 3
a 2
.
B.
.
C.
.
D.
.
A.
12
6
12
4
Câu 15. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. m ≥ 3.
C. −3 ≤ m ≤ 3.
D. −2 ≤ m ≤ 2.
Câu 16. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (1; 3; 2).
C. (2; 4; 3).
D. (2; 4; 6).
Câu 17. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.

B. Khối lập phương.

C. Khối 12 mặt đều.
!x
1
1−x

Câu 18. [2] Tổng các nghiệm của phương trình 3 = 2 +
9
A. 1 − log2 3.
B. − log3 2.
C. − log2 3.

D. Khối bát diện đều.

D. log2 3.

Câu 19. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một mơn nằm cạnh nhau là
1
2
1
9
A.
.
B. .
C. .
D.
.
10

5
5
10
Câu 20. Giá√trị cực đại của hàm số y√= x3 − 3x2 − 3x + 2

A. −3 + 4 2.
B. 3 − 4 2.
C. −3 − 4 2.


D. 3 + 4 2.

Câu 21. Hàm số nào sau đây khơng có cực trị
x−2
A. y =
.
B. y = x4 − 2x + 1.
2x + 1

D. y = x3 − 3x.

1
C. y = x + .
x

Câu 22. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 6 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
Câu 23. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
A. 96.


B. 64.

C. 82.

8
x

D. 81.
x−1 y z+1
Câu 24. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x − y + 2z − 1 = 0.
B. 2x + y − z = 0.
C. −x + 6y + 4z + 5 = 0.
D. 10x − 7y + 13z + 3 = 0.
Câu 25. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. Vô nghiệm.
C. 2.
D. 3.
Câu 26. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.

B. V = 3S h.
C. V = S h.
2
3

D. V = S h.
Trang 2/11 Mã đề 1


Câu 27. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim f (x) = f (a).
x→a
C. lim+ f (x) = lim− f (x) = a.
D. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a

x→a

x→a

Câu 28. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 5 mặt.
C. 3 mặt.

D. 6 mặt.


Câu 29. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Năm mặt.
C. Hai mặt.

D. Bốn mặt.

Câu 30. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 7.
C. 3.
D. 1.
Câu 31. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = ln 10.

B. f 0 (0) = 10.

C. f 0 (0) = 1.

D. f 0 (0) =

1
.
ln 10

3a
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng


a
2a
a 2
a
B. .
C.
.
D.
.
A. .
4
3
3
3
Câu 33. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 6.
C. 8.
D. 5.
Câu 32. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =

0 0 0 0
0
Câu 34.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 3

a 6
A.
.
B.
.
C.
.
D.
.
3
2
2
7
x−2
Câu 35. Tính lim
x→+∞ x + 3
2
C. 2.
D. −3.
A. 1.
B. − .
3
1

Câu 36. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = R.
C. D = (1; +∞).
Câu 37. [2] Tổng các nghiệm của phương trình 3
A. 8.

B. 6.

D. D = R \ {1}.

x2 −3x+8

= 92x−1 là
C. 7.

D. 5.
! x3 −3mx2 +m
1
Câu 38. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m , 0.
B. m = 0.
C. m ∈ (0; +∞).
D. m ∈ R.

Câu 39. Tính thể tích khối lập phương
biết tổng diện tích tất cả các mặt bằng 18.

A. 9.
B. 3 3.
C. 8.
D. 27.
Câu 40. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho

tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó không rút tiền ra?
A. 10 năm.
B. 11 năm.
C. 12 năm.
D. 13 năm.
log(mx)
Câu 41. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m ≤ 0.
C. m < 0 ∨ m > 4.
D. m < 0.
Trang 3/11 Mã đề 1


[ = 60◦ , S O
Câu 42. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ BC) bằng

√ với mặt đáy và S O = a. Khoảng cách từ A đến (S

a 57
a 57
2a 57
.
B. a 57.
C.

.
D.
.
A.
19
19
17



x=t




Câu 43. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
A. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
4
4

9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z − 3) = .
D. (x + 3) + (y + 1) + (z + 3) = .
4
4
Câu 44. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.

Câu 45. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. Vô số.
C. 63.
D. 62.
Câu 46. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục ảo.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.

Câu 47. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; 3; 3).
C. A0 (−3; −3; 3).
D. A0 (−3; 3; 1).
Câu 48. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
18
6
15
9
1 − 2n
Câu 49. [1] Tính lim
bằng?
3n + 1
1
2
2
A. .
B. 1.

C. − .
D. .
3
3
3
0 0 0
Câu 50. [3-1122h] Cho hình lăng trụ ABC.A B C có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.

24
6
12
36
5
Câu 51. Tính lim
n+3
A. 3.
B. 0.
C. 1.
D. 2.
Trang 4/11 Mã đề 1


Câu 52. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD), S D = a 5. Thể tích khối


√ chóp S .ABCD là
3

a3 6
a3 5
a
15
3
A. a 6.
.
C.
.

D.
.
B.
3
3
3
Câu 53. Khối đa diện đều loại {3; 5} có số cạnh
A. 20.
B. 30.
C. 12.
D. 8.
Câu 54. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
√ góc với đáy, S C = a 3. Thể tích khối chóp S 3.ABCD là

a3 3
a
a3 3
3
A.
.
B. a .
C.
.
D.
.
3
3
9

Câu 55. Khối đa diện đều loại {3; 4} có số mặt
A. 12.
B. 8.
C. 10.
D. 6.
Câu 56. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là√
3
3
a
4a 3
2a3 3
a3
A.
.
B.
.
C.
.
D.
.
3
3
3
6
Câu 57. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Khơng có.

C. Có hai.
D. Có một hoặc hai.
Câu 58. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {5; 3}.
!4x
!2−x
2
3
Câu 59. Tập các số x thỏa mãn


3 # 2
!
"
!
"
2
2
2
; +∞ .
B. −∞; .
C. − ; +∞ .
A.
5
5
3

D. {4; 3}.


#
2
D. −∞; .
3

1
Câu 60. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = 4.
B. m = −3, m = 4.
C. m = −3.
D. −3 ≤ m ≤ 4.
Câu 61. Tính lim
x→3

A. −3.

x2 − 9
x−3

B. 6.

C. 3.

Câu 62. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = R \ {1; 2}.

C. D = R.
!
1
1
1
Câu 63. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 1.
B. 0.
C. .
2
3
2
Câu 64. Tập xác định của hàm số f (x) = −x + 3x − 2 là
A. [−1; 2).
B. (1; 2).
C. [1; 2].

D. +∞.

2

D. D = [2; 1].

D. 2.
D. (−∞; +∞).


Câu 65. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n lần.
B. n2 lần.
C. 3n3 lần.
D. n3 lần.

Câu 66. Thể tích của khối lập phương có cạnh bằng a 2 √


2a3 2
A. V = a3 2.
B. V = 2a3 .
C.
.
D. 2a3 2.
3
Trang 5/11 Mã đề 1


Câu 67. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3 3
a3 3
a3
3
.
C.

.
D.
.
A. a .
B.
3
2
6
Câu 68. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 10 cạnh.

C. 11 cạnh.

D. 12 cạnh.

Câu 69. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 387 m.
C. 1587 m.
D. 25 m.
tan x + m
nghịch biến trên khoảng
Câu 70. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
 π

0; .
4
A. (1; +∞).
B. (−∞; −1) ∪ (1; +∞). C. (−∞; 0] ∪ (1; +∞). D. [0; +∞).
Câu 71. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.

C. Khối bát diện đều.

Câu 72. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 0, 8.
C. 7, 2.

D. Khối 12 mặt đều.
D. 72.

Câu 73. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




20 3
14 3
A. 8 3.
B.
.

C.
.
D. 6 3.
3
3
Câu 74. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng
√M + m

A. 8 2.
B. 8 3.
C. 7 3.
D. 16.
Câu 75. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
√ với đáy và S C = a 3. 3Thể
√ tích khối chóp S .ABC
√là

3
3
a 6
2a 6
a 3
a3 3
A.
.
B.

.
C.
.
D.
.
12
9
2
4
Câu 76. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích khối chóp S .ABCD là √


3
3

2a3 3
a
3
a
3
A.
.
B. a3 3.
C.
.
D.
.
3

6
3
Câu 77. Phát biểu nào sau đây là sai?
1
A. lim = 0.
n
C. lim qn = 0 (|q| > 1).

1
= 0.
nk
D. lim un = c (un = c là hằng số).

B. lim

d = 120◦ .
Câu 78. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.
B.
.
C. 2a.
D. 3a.
2

Câu 79. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. − .

B. 3.
C. −3.
D. .
3
3
Trang 6/11 Mã đề 1


x+3
Câu 80. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 2.
B. Vô số.
C. 3.
D. 1.
Câu 81. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 27cm3 .
C. 46cm3 .
D. 64cm3 .
Câu 82. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ.
100.(1, 01)3
120.(1, 12)3

triệu.
B.
m
=
triệu.
A. m =
(1, 12)3 − 1
3
100.1, 03
(1, 01)3
C. m =
triệu.
D. m =
triệu.
3
(1, 01)3 − 1
Câu 83. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3 3
a3 3
a3 3
a3
.
B.
.
C.
.
D.
.

A.
4
8
12
4
Câu 84. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là 4, phần ảo là 1.
D. Phần thực là 4, phần ảo là −1.
Câu 85. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 1 nghiệm.
B. 2 nghiệm.
C. Vơ nghiệm.

D. 3 nghiệm.

Câu 86. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
! của A lên BC là
!
8
5
7
; 0; 0 .
C.
; 0; 0 .
D.
; 0; 0 .
A. (2; 0; 0).

B.
3
3
3
Câu 87.
√ min |z − 1 − i|.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
A. 10.
B. 2.
C. 1.
D. 2.
Câu 88. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
1
ab
ab
.
D. √
A. √
.
B. √
.
C. 2
.
2
a +b
a2 + b2
2 a2 + b2
a2 + b2

Câu 89. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = 21.
C. P = −21.
D. P = 10.
!
1
1
1
Câu 90. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. 2.
B. .
C. .
D. +∞.
2
2
Câu 91. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −15.
C. −9.
D. −5.
Câu 92. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 4.

B. 3.
C. 6.
D. 8.
Trang 7/11 Mã đề 1


Câu 93. Tìm giới hạn lim
A. 2.

2n + 1
n+1
B. 1.

C. 3.

Câu 94. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m > 0.
C. m = 0.

D. 0.
D. m < 0.

Câu 95. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng

2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (1; 0; 2).
B. ~u = (2; 2; −1).
C. ~u = (2; 1; 6).
D. ~u = (3; 4; −4).
7n2 − 2n3 + 1
Câu 96. Tính lim 3
3n + 2n2 + 1
7
A. 0.
B. .
3

2
C. - .
3

D. 1.

Câu 97. [1] Hàm số nào đồng√biến trên khoảng (0; +∞)?
B. y = log 14 x.
A. y = loga x trong đó a = 3 − 2.
D. y = log √2 x.
C. y = log π4 x.
Câu 98. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 4.


C. 3.

D. 2.

Câu 99. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim+ f (x) = f (a) và lim− f (x) = f (b).

x→a

x→b

x→a

x→b

D. lim− f (x) = f (a) và lim− f (x) = f (b).

Câu 100. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].

Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. e2016 .
C. 0.
D. 22016 .
Câu 101. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 4.
C. −2.
D. 2.
x
x−3 x−2 x−1
+
+
+
và y = |x + 2| − x − m (m là tham
Câu 102. [4-1213d] Cho hai hàm số y =
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. [2; +∞).
C. (−∞; 2].
D. (2; +∞).
Câu 103. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
.
C. −4.

D. −2.
A. −7.
B.
27
x+1
Câu 104. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. .
D. 1.
3
2
6
Câu 105. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = −2.
C. m = 0.

D. m = −3.

Câu 106. Dãy số nào sau đây có giới hạn khác 0?
n+1
sin n
A.
.

B.
.
n
n

1
D. √ .
n

C.

1
.
n

Trang 8/11 Mã đề 1


1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = e + 1.
C. xy0 = ey − 1.
D. xy0 = −ey + 1.

Câu 107. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey − 1.


Câu 108. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 109. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 3.
C. 2.
D. Vô nghiệm.
Câu 110. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3.
Tính f (2) + f (4)?
A. 12.
B. 10.
C. 4.
D. 11.
2n − 3
Câu 111. Tính lim 2
bằng
2n + 3n + 1
A. 1.
B. +∞.
C. 0.
D. −∞.
Câu 112. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 1; m = 1.
C. M = e2 − 2; m = e−2 + 2.
D. M = e−2 + 2; m = 1.
Z 1

xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
Câu 113. Cho
0

1
.
2

Câu 114. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 4.
A. 1.

B.

C. 0.

D.

1
.
4

C. 108.
D. 6.


Câu 115. Phần thực
√ và phần ảo của số√phức z = 2 − 1 − 3i lần lượt√l


A. Phần thực là √2 − 1, phần ảo là √3.
B. Phần thực là 2 −√1, phần ảo là − √3.
D. Phần thực là 1 − 2, phần ảo là − 3.
C. Phần thực là 2, phần ảo là 1 − 3.
x−1
Câu 116. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng AB có độ dài bằng

√ đều ABI có hai đỉnh A, √
A. 2 3.
B. 2 2.
C. 2.
D. 6.
Câu 117. Cho hai hàm y = f (x), y = Z
g(x) có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
0
B. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z

C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.

[ = 60◦ , S O
Câu 118. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S
√ BC) bằng


a 57
2a 57
a 57
A. a 57.
B.
.
C.
.
D.
.
17
19
19
Câu 119.

Trong các khẳng định sau, khẳng định nào sai?Z
Z
xα+1
A.
xα dx =
+ C, C là hằng số.
B.
0dx = C, C là hằng số.
α+1
Z
Z
1
C.
dx = ln |x| + C, C là hằng số.
D.
dx = x + C, C là hằng số.
x
Trang 9/11 Mã đề 1


Câu 120. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 21.
C. 23.
D. 24.
Câu 121. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √

tích khối chóp S .ABC là √

3
3
a 3
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
24
24
8
48
Câu 122. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
B. 34.
C.
.

D. 5.
A. 68.
17
Câu 123. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 6.
B. V = 3.
C. V = 4.
D. V = 5.
Câu 124. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m > 3.
C. m ≥ 3.
D. m < 3.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 125. Cho hình chóp S .ABC có BAC
(ABC). Thể


√ tích khối chóp S .ABC là
3
3
3

3
a
2
a

a 3
.
B. 2a2 2.
.
D.
.
C.
A.
12
24
24
Câu 126. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A. 1.
B. 2.
C.
.
D. .
2
2
0 0
0 0 0
Câu 127. Mặt phẳng (AB C ) chia khối lăng trụ ABC.A B C thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Hai khối chóp tam giác.
x2 − 5x + 6
Câu 128. Tính giới hạn lim

x→2
x−2
A. −1.
B. 0.

C. 1.

D. 5.

Câu 129. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
!
1
C. Hàm số đồng biến trên khoảng ; 1 .
3

!
1
B. Hàm số nghịch biến trên khoảng ; 1 .
3
!
1
D. Hàm số nghịch biến trên khoảng −∞; .
3

Câu 130. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (1; −3).
C. (2; 2).


D. (0; −2).

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2. A

C

3.
5. A

6. A

7.

C

9. A
11.


8.

C

10.

C

12.

D

13. A
D

18.

19.

D

20. A

21. A
D

23.
25.

C


C
D

24.

D

26.

B

C

28. A
30. A

31. A

32.
B

C

34. A

35. A

36.


37.

C

38.

C
B

40.

B

41. A

42. A

43. A

44.

45.
47.

D

22.

29. A


39.

C

16.

C

17.

33.

D

14.

15.

27.

C

4.

C
B

46.

D


D

49.

B

C

50.

C

51.

B

52.

C

53.

B

54.

C

55.


B

56.
58.
60.

57.

B
C

59.
61.

B

62.

C
B

63. A

C

64.

D


65.

66.

D

67.

68.

D

B

69. A
1

D
C


70. A

71. A

72. A

73.

74.


D

75. A

76.

D

77.

78.

C

79.

B

80.

D

C

D

81.

B


82.

D

83.

B

84.

D

85.

B

C

86.
88.

D

90. A
92.

C

95. A

B
C

99.

C

101.

C
D

103.

B

104.

D

97.

C

100.

C

105.


106. A
108.

89.
93. A

B

96.

102.

C

91. A

94. A
98.

87.

B
C

107.
B

109. A

110. A


111.

112. A

113.

B

115.

B

114.

B

116. A

119. A

C

120. A

121.

122.

C


123.

124.

C

125.

B

B
C
D

127.

128. A
130.

C

117.

118.

126.

C


129.
D

2

C
B



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×