Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (599)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.93 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

2n + 1
Câu 1. Tìm giới hạn lim
n+1
A. 2.
B. 0.

C. 3.

Câu 2. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.

B. 4.

C. 3.

D. 1.
1
3|x−1|

= 3m − 2 có nghiệm duy


D. 1.

Câu 3. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



3
5a3 3
a3 3
4a3 3
2a 3
.
B.
.
C.
.
D.
.
A.
3
3
2
3
Câu 4. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối bát diện đều.
C. Khối lăng trụ tam giác.

D. Khối lập phương.
Câu 5. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá trị
của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = 22.
C. y(−2) = 2.
D. y(−2) = −18.

Câu 6. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. Vơ số.
C. 63.
D. 62.
Câu 7.√ Thể tích của khối lăng trụ
√ tam giác đều có cạnh bằng
√ 1 là:
3
3
3
.
B.
.
C.
.
A.
4
2
12
Câu 8. Khối đa diện đều loại {4; 3} có số đỉnh

A. 4.
B. 8.
C. 6.

D.

3
.
4

D. 10.

Câu 9. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không rút
tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng
tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đơi số tiền gửi ban đầu, giả
định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 13 năm.
C. 10 năm.
D. 12 năm.
Câu 10. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
A. 2 13.
.
C. 26.

B.
D. 2.
13
Câu 11. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 17 tháng.
B. 18 tháng.
C. 16 tháng.
D. 15 tháng.
Câu 12. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
Trang 1/10 Mã đề 1


đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 216 triệu.
B. 210 triệu.
C. 220 triệu.
D. 212 triệu.
Câu 13. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 20 mặt đều.

C. Khối bát diện đều.

Câu 14. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình

nhất?
A. 2.

B. 4.

C. 3.

D. Khối 12 mặt đều.
1

3|x−1|

= 3m − 2 có nghiệm duy

D. 1.

Câu 15. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
n−1
Câu 16. Tính lim 2
n +2
A. 3.
B. 0.
C. 1.
D. 2.
3
2

Câu 17. Giá
√ x − 3x − 3x + 2

√ trị cực đại của hàm số y =
B. −3 − 4 2.
C. −3 + 4 2.
A. 3 + 4 2.


D. 3 − 4 2.
q
Câu 18. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 4].
C. m ∈ [0; 2].
D. m ∈ [0; 1].
!2x−1
!2−x
3
3
Câu 19. Tập các số x thỏa mãn


5
5
A. [3; +∞).
B. [1; +∞).

C. (−∞; 1].
D. (+∞; −∞).
Câu 20. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.
.
C. a3 .
D.
.
24
6
12
Câu 21. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 10.
C. 12.
D. 6.
Câu 22. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 4.
C. 3.
D. 8.





Câu 23. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
9
3
3
A. 0 ≤ m ≤ .
B. 0 < m ≤ .
C. m ≥ 0.
D. 0 ≤ m ≤ .
4
4
4
Câu 24. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = 0.
C. x = −2.
D. x = −5.
2

2

Câu 25. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ là

√ Thể tích khối chóp S 3.ABC
3

a 3
a 3
a3 3
a3 2
A.
.
B.
.
C.
.
D.
.
12
4
6
12
x2 − 12x + 35
Câu 26. Tính lim
x→5
25 − 5x
2
2
A. +∞.
B. −∞.
C. − .
D. .
5
5
Trang 2/10 Mã đề 1



Câu 27. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (−∞; −1) và (0; +∞). C. (−1; 0).
D. (0; 1).
Câu 28. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 12.



Câu 29. Phần thực và √
phần ảo của số phức
√ z=
A. Phần thực là 1√− 2, phần ảo là −√ 3.
C. Phần thực là 2 − 1, phần ảo là 3.
x2 − 3x + 3
Câu 30. Hàm số y =
đạt cực đại tại
x−2
A. x = 3.
B. x = 1.

C. 10.
D. 30.

2 − 1 − 3i lần lượt √l

B. Phần thực là √2 − 1, phần ảo là −√ 3.
D. Phần thực là 2, phần ảo là 1 − 3.
C. x = 0.


D. x = 2.
[ = 60◦ , S A ⊥ (ABCD).
Câu 31. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh

√ S C là a. Thể tích khối
√chóp S .ABCD là
3
3
3

a
a
a
2
3
2
.
C.
.
D.
.
A. a3 3.
B.
12
6
4
Câu 32. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy một góc 60◦ . Thể tích√khối chóp S .ABCD là



3
3
3

2a
a
a
3
3
3
A. a3 3.
.
C.
.
D.
.
B.
3
3
6
Câu 33. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 2.
C. 3.
D. 1.
Câu 34. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn

ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
20
20
40
10
C50
C50
C50
.(3)30
.(3)20
.(3)10
C50
.(3)40
.
B.
.
C.
.
D.
.
A.
450
450
450
450
Câu 35. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vơ số.
B. 3.
C. 2.

D. 1.
Câu 36. Khối chóp ngũ giác có số cạnh là
A. 11 cạnh.
B. 12 cạnh.
C. 10 cạnh.
D. 9 cạnh.
2
2n − 1
Câu 37. Tính lim 6
3n + n4
2
B. 2.
C. 1.
D. 0.
A. .
3
[ = 60◦ , S O
Câu 38. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S√BC) bằng

a 57
a 57
2a 57
A.
.
B.
.
C.

.
D. a 57.
19
17
19
2
2
Câu 39. [3-c] Giá trị nhỏ nhất √
và giá trị lớn nhất của hàm √
số f (x) = 2sin x + 2cos x lần lượt
√ là
A. 2 và 3.
B. 2 và 3.
C. 2 2 và 3.
D. 2 và 2 2.
Câu 40. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (−1; 1).
C. (−∞; −1).

D. (−∞; 1).

Câu 41. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng



c a2 + b2

a b2 + c2
abc b2 + c2
b a2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Trang 3/10 Mã đề 1


0 0 0 0
0
Câu 42.√ [2] Cho hình lâp phương
√ bằng
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
a 6
a 3
a 6
a 6
A.
.
B.

.
C.
.
D.
.
7
2
3
2



x = 1 + 3t




Câu 43. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là












x
=
−1
+
2t
x
=
1
+
7t
x
=
1
+
3t
x = −1 + 2t

















A. 
.
C. 
D. 
y = −10 + 11t . B. 
y=1+t
y = 1 + 4t .
y = −10 + 11t .

















z = −6 − 5t
z = 1 + 5t
z = 1 − 5t
z = 6 − 5t

Câu 44. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số mặt của khối chóp bằng 2n+1.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
Câu 45. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 3.

C. 5.

D. 2.

q
Câu 46. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 1].
B. m ∈ [0; 2].
C. m ∈ [−1; 0].

D. m ∈ [0; 4].
Câu 47. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim− f (x) = f (b).
B. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim− f (x) = f (a) và lim+ f (x) = f (b).
D. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a

x→a

x→b

Câu 48. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 2.
B. 6.
C. −1.
0

0

0

0

x→b


D. 1.

0

Câu 49. Mặt phẳng (AB C ) chia khối lăng trụ ABC.A B C thành các khối đa diện nào?
A. Hai khối chóp tam giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Hai khối chóp tứ giác.
Câu 50. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 20 triệu đồng.
B. 2, 22 triệu đồng.
C. 2, 25 triệu đồng.
D. 3, 03 triệu đồng.
2

Câu 51. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1
B.
.
C.
.
A. √ .

2e3
e3
2 e

D.

1
.
e2

Câu 52. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là −1, phần ảo là −4.
Trang 4/10 Mã đề 1



Câu 53. Tính lim


4n2 + 1 − n + 2
bằng
2n − 3
B. 2.

3
.
D. 1.

2
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 54. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = 1.
1
C. lim un = 0.
D. lim un = .
2
Câu 55. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 6.
C. 10.
D. 12.
A. +∞.

C.

d = 120◦ .
Câu 56. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
C. 4a.
D. 2a.
A. 3a.
B.
2

Câu 57. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
Câu 58. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng


√ góc với đáy, S C = a 3. Thể tích khối chóp S 3.ABCD
3
a 3
a3
a 3
.
B. a3 .
C.
.
D.
.
A.
9
3
3
Câu 59. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.

C. Khối 12 mặt đều.


Câu 60. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = 3S h.
B. V = S h.
C. V = S h.
3
2
√3
4
Câu 61. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
2
5
7
B. a 3 .
C. a 8 .
A. a 3 .
Câu 62. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.

C. Khối 12 mặt đều.

D. Khối 20 mặt đều.
D. V = S h.
5

D. a 3 .
D. Khối lập phương.

Câu 63. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập

vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 7 năm.
C. 9 năm.
D. 8 năm.
Câu 64. Bát diện đều thuộc loại
A. {4; 3}.
B. {3; 4}.
Câu 65.
A. 64.
Câu 66.
A. 2.
Câu 67.
A. −4.

C. {3; 3}.

D. {5; 3}.
8
[3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
B. 96.
C. 81.
D. 82.
log7 16
[1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30

B. −2.
C. 4.
D. −4.
4x + 1
[1] Tính lim
bằng?
x→−∞ x + 1
B. 4.
C. 2.
D. −1.
Trang 5/10 Mã đề 1


Câu 68. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log 14 x.
B. y = log π4 x.

C. y = loga x trong đó a = 3 − 2.
D. y = log √2 x.
Câu 69. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 8π.
B. 32π.
C. 16π.
D. V = 4π.
Câu 70. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (2; +∞).
C. R.


D. (0; 2).

Câu 71. Dãy
!n số nào sau đây có giới
!n hạn là 0?
4
5
B.
.
A. − .
3
e

!n
5
D.
.
3

!n
1
C.
.
3

Câu 72. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 1.
C. 2.


D. Vơ nghiệm.

x3 − 1
Câu 73. Tính lim
x→1 x − 1
A. +∞.
B. 3.

D. 0.

C. −∞.

Câu 74. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Câu 75. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m > 3.
C. m ≤ 3.
D. m ≥ 3.
 π
Câu 76. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


1 π3
2 π4

3 π6
e .
B. e .
C. 1.
D.
e .
A.
2
2
2
Câu 77. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. e2016 .
C. 1.
D. 0.

Câu 78. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.


√ tích khối chóp S .ABC3 √
3
a 6
a3 2
a3 6
a 6
.
B.

.
C.
.
D.
.
A.
6
36
6
18
Câu 79. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 6.
C. V = 3.
D. V = 4.
Câu 80.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) − g(x)]dx =

A.

f (x)dx −

g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z


f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
B.

Câu 81. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. −7.
C. −3.

D. Không tồn tại.
Trang 6/10 Mã đề 1


Câu 82. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
2
9
1
.

B. .
C. .
D.
.
A.
10
5
5
10
Câu 83. Khối lập phương thuộc loại
A. {5; 3}.
B. {3; 4}.
C. {3; 3}.
D. {4; 3}.
Câu 84. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
A. √
.
B. 2
.
C. √
.
D. √
.
2
a +b

a2 + b2
2 a2 + b2
a2 + b2
2
Câu 85. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
C. m = ± 2.
D. m = ±3.
A. m = ±1.
B. m = ± 3.
2
Câu 86. Tính
√ mơ đun của số phức z√biết (1 + 2i)z = 3 + 4i. √4
A. |z| = 2 5.
B. |z| = 5.
C. |z| = 5.

D. |z| = 5.

Câu 87. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. 1.

B. +∞.

C. 2.

D. 0.


Câu 88.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nào sai?
A.
Z
C.

( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
f (x)g(x)dx =
f (x)dx g(x)dx.

Câu 89. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 8.

k f (x)dx = f

B.
Z
D.

f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.


C. 30.

D. 12.

Câu 90. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
!
7
5
8
A.
; 0; 0 .
B. (2; 0; 0).
C.
; 0; 0 .
D.
; 0; 0 .
3
3
3
Câu 91. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).


B. Cả ba mệnh đề.
2−n
Câu 92. Giá trị của giới hạn lim
bằng
n+1
A. 0.
B. −1.

C. (I) và (III).

D. (I) và (II).

C. 2.

D. 1.

log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m ≤ 0.
D. m < 0 ∨ m > 4.

Câu 93. [3-1226d] Tìm tham số thực m để phương trình
A. m < 0.

B. m < 0 ∨ m = 4.
!
5 − 12x
Câu 94. [2] Phương trình log x 4 log2

= 2 có bao nhiêu nghiệm thực?
12x − 8
A. 1.
B. 3.
C. 2.
D. Vô nghiệm.

Trang 7/10 Mã đề 1


Câu 95. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
" nhỏ! nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
5
5
A. 2; .
B.
;3 .
C. (1; 2).
D. [3; 4).
2
2


ab.

2

Câu 96. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 3.

B. 2.
C. 5.

D. 4.

Câu 97. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối

√ chóp S .ABCD là

3
3
a 3
a3 3
a3 2
a 6
.
B.
.
C.
.
D.
.
A.
48
24
48
16
Câu 98. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.

B. Trục thực.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Đường phân giác góc phần tư thứ nhất.
Câu 99. Tính lim

x→+∞

x−2
x+3

2
D. 2.
C. − .
3
Câu 100. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 2.
C. 1.
D. Vô nghiệm.
tan x + m
Câu 101. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. [0; +∞).
C. (−∞; −1) ∪ (1; +∞). D. (1; +∞).
A. 1.


B. −3.

Câu 102. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. 1.
C. e.
D. 4 − 2 ln 2.
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 103. Giá trị lớn nhất của hàm số y =
m−x
3
A. 1.
B. −2.
C. 0.
D. −5.
Câu 104. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. .
B. 7.
C.
.
D. 5.
2
2
Câu 105. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Hai mặt.

C. Ba mặt.
D. Năm mặt.
Câu 106. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R \ {1; 2}.
B. D = [2; 1].
C. D = R.

2
Câu 107.
√ Xác định phần ảo của số√phức z = ( 2 + 3i)
A. 6 2.
B. −6 2.
C. −7.
2

D. D = (−2; 1).
D. 7.

Câu 108. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 68.
B. 5.
C.
.
D. 34.

17
!x
1
1−x
Câu 109. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. log2 3.
B. 1 − log2 3.
C. − log2 3.
D. − log3 2.
Trang 8/10 Mã đề 1


Câu 110. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,

√ N, P bằng


14 3
20 3
D. 8 3.
.
B.
.
C. 6 3.
A.
3

3
2
Câu 111. Giá trị giới hạn lim (x − x + 7) bằng?
x→−1

A. 5.

B. 0.

C. 7.

D. 9.

Câu 112. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
3
9
A. .
B. .
C. 1.
D. 3.
2
2
Câu 113. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = −10.
C. P = 10.
D. P = −21.
Câu 114. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lập phương.

B. Hình lăng trụ.
C. Hình chóp.

D. Hình tam giác.

Câu 115. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 3 mặt.
C. 6 mặt.

D. 9 mặt.

Câu 116. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (2; 4; 6).
C. (1; 3; 2).
D. (2; 4; 3).
mx − 4
Câu 117. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 45.
B. 34.
C. 67.
D. 26.
Câu 118. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.

C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Hai hình chóp tam giác.
Câu 119. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > 1.
C. m > 0.

D. m > −1.

Câu 120. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 4.
C. ln 10.
D. ln 12.
Câu 121. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
D. − .
A. − .
B. −e.
C. − 2 .
e
e
2e
Câu 122. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n3 lần.
B. 2n2 lần.
C. n3 lần.

D. n3 lần.
Câu 123. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là

3
3
2a 6
a 3
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
9
4
2
12
Câu 124. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
Trang 9/10 Mã đề 1


Câu 125. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết

rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
23
13
5
A.
.
B. −
.
C.
.
D. − .
25
100
100
16
0 0 0
Câu 126. [3-1122h] Cho hình lăng trụ ABC.A B C có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4




a3 3

a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
36
12
24
6
Câu 127. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là −3, phần ảo là 4.
Câu 128. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên khoảng (−2; 1).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
d = 30◦ , biết S BC là tam giác đều
Câu 129. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách

√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
26
16
9
13
Câu 130. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.

B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
D. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ

Mã đề thi 1
2.

1. A
C

3.
5.

4. A
D

6.

7. A
D

9.
C

11.
13.

B

B

10.

B


12.

D

14.

D

C

16.

17.

C

18. A

D

26.

27.

C
B

31.


D
B
C

35.
37.

D

D

28.

B

30.

B

32.

B

34.

C

36.

C


38. A
40.

C

39.
B

B

42.

43.

D

C

44. A

45. A

46.

47.

D

49.


C

C

48.

B

50.

B

51.

D

52.

53.

D

54.

55.

D

56.


C
D
B

58.

57. A
59.
61.

C

24. A

25. A

41.

D

22.

23.

33.

B

20.


B

21. A

29.

D

8.

15.
19.

D

C

60.

D
B

62. A

B

63.

C


64.

65.

C

66.

D

68.

D

67.

B
1

B


70.
72.

D

73.


B
C

74.
76. A
78.

D

80.

C
D

82.
84. A

B

75.

D

77.

D

79.

D


81.

D

83.

D

85. A

86.

C

87.

88.

C

89. A

90.
92.

C

71.


91.

D
B

94. A
96.

D

D

D

93.

B

95.

B
C

97.

98.

C

99. A


100.

C

101.

102.

C

103.

C

105.

C

104. A

D

106.

C

107. A

108.


C

109.

110.

C

111.

D

113.

D

112. A
D

114.
117.

116.

B
D

118.


B

119.

D

120. A

121.

D

122.

123.

D

124. A

125.

C

B

D

126.


B

127.

D

128.

B

129.

D

130.

B

2



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×