Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (599)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (155.13 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
2

Câu 1. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.
B. 2 − log2 3.
C. 1 − log3 2.

D. 3 − log2 3.

Câu 2. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 1.
C. Vơ nghiệm.
D. 2.
Câu 3. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 3 mặt.
C. 9 mặt.
D. 4 mặt.
Câu 4. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây thứ
5 đến giây thứ 15 là bao nhiêu?
A. 1134 m.
B. 6510 m.


C. 1202 m.
D. 2400 m.
Câu 5. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
9
18
6
15
2
Câu 6. Giá trị giới hạn lim (x − x + 7) bằng?
x→−1
A. 5.
B. 0.
C. 9.
D. 7.
Câu 7. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 2.
C. 1.

Câu 8. Thể tích của khối lập phương có cạnh bằng a 2



A. 2a3 2.
B. V = 2a3 .
C. V = a3 2.

D. 6.

2a3 2
.
D.
3

a
1
Câu 9. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 2.
B. 7.
C. 1.
D. 4.
Câu 10. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.424.000.
B. 102.423.000.
C. 102.016.000.
D. 102.016.000.

Câu 11. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tam giác.
B. Một hình chóp tam giác và một hình chóp tứ giác.
C. Một hình chóp tứ giác và một hình chóp ngũ giác.
D. Hai hình chóp tứ giác.
Câu 12. Dãy số nào sau đây có giới hạn là 0?
n2 − 2
1 − 2n
A. un =
.
B. un =
.
2
5n − 3n
5n + n2

C. un =

n2 − 3n
.
n2

Câu 13. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 1.

B. 4.

C. 3.


D. un =
1
3|x−1|

n2 + n + 1
.
(n + 1)2

= 3m − 2 có nghiệm duy

D. 2.
Trang 1/10 Mã đề 1


Câu 14. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 160 cm2 .
C. 1200 cm2 .
D. 160 cm2 .
Câu 15. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2

−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (1; 0; 2).
C. ~u = (3; 4; −4).
D. ~u = (2; 1; 6).
Câu 16. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
A. 2.
B. .
C. − .
2
2
Câu 17. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C. Khối lập phương.

D. Khối bát diện đều.

Câu 18. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối 20 mặt đều.

D. Khối bát diện đều.

C. Khối tứ diện đều.

D. −2.


Câu 19. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 27 lần.
Câu 20. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 13.
B. log2 2020.
C. 2020.
D. log2 13.
Câu 21. Khối đa diện đều loại {4; 3} có số đỉnh
A. 4.
B. 10.

C. 8.

D. 6.

Câu 22. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
B. F(x) = G(x) trên khoảng (a; b).
C. Cả ba câu trên đều sai.
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
Câu 23. Dãy! số nào có giới hạn bằng 0?
n
6
.

B. un = n2 − 4n.
A. un =
5

!n
−2
C. un =
.
3

D. un =

n3 − 3n
.
n+1

2

Câu 24. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 2.
B. 3.
C. 4.

D. 5.

Câu 25. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
5
23

9
A.
.
B. − .
C. −
.
D.
.
100
16
100
25
d = 300 .
Câu 26. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V √của khối lăng trụ đã cho. √

a3 3
3a3 3
A. V = 3a3 3.
B. V =
.
C. V =
.
D. V = 6a3 .
2
2
Câu 27. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e−2 − 2; m = 1.
C. M = e2 − 2; m = e−2 + 2.

D. M = e−2 + 1; m = 1.
Câu 28. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. −7, 2.
B. 72.
C. 7, 2.

D. 0, 8.
Trang 2/10 Mã đề 1


2n + 1
Câu 29. Tính giới hạn lim
3n + 2
1
A. .
B. 0.
2
Câu 30. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối bát diện đều.

C.

3
.
2

D.

2

.
3

C. Khối 12 mặt đều.
D. Khối tứ diện đều.

Câu 31. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị ngun dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 63.
C. Vô số.
D. 64.
Câu 32. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
B. − .
C. −e.
A. − 2 .
e
e
log 2x
Câu 33. [1229d] Đạo hàm của hàm số y =

x2
1
1 − 4 ln 2x
1 − 2 log 2x
0
A. y0 = 3
.

B. y0 =
.
C.
y
=
.
2x ln 10
2x3 ln 10
x3

D. −

1
.
2e

D. y0 =

1 − 2 ln 2x
.
x3 ln 10

1

Câu 34. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.
B. D = (−∞; 1).
C. D = R.

D. D = (1; +∞).


Câu 35. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
B. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
C. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
!vn
un
= +∞.
D. Nếu lim un = a > 0 và lim vn = 0 thì lim
vn
!4x
!2−x
2
3
Câu 36. Tập các số x thỏa mãn


" 3
! 2
"
!
#
#

2
2
2
2
B. − ; +∞ .
C.
; +∞ .
D. −∞; .
A. −∞; .
5
3
5
3
x+3
Câu 37. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 3.
B. 1.
C. 2.
D. Vô số.
x−1
Câu 38. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ có độ dài bằng
√ đều ABI có hai đỉnh A,√B thuộc (C), đoạn thẳng AB
B. 6.

C. 2 2.
D. 2.
A. 2 3.
1
Câu 39. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (1; 3).
B. (−∞; 1) và (3; +∞). C. (−∞; 3).
D. (1; +∞).
Câu 40. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1. √
1
3
3
A. 1.
B. .
C. .
D.
.
2
2
2
q
Câu 41. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 4].
C. m ∈ [0; 2].
D. m ∈ [0; 1].

Trang 3/10 Mã đề 1


Câu 42. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a 6
a3 3
a3 6
A.
.
B.
.
C.
.
D.
.
8
48
24
24
Câu 43. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {5; 2}.
C. {2}.

D. {5}.
Câu 44. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 12 m.
C. 24 m.
D. 16 m.
tan x + m
Câu 45. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. (1; +∞).
C. (−∞; 0] ∪ (1; +∞). D. [0; +∞).
Câu 46. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
8
5
7
; 0; 0 .
B.
; 0; 0 .
C.
; 0; 0 .
D. (2; 0; 0).

A.
3
3
3
Câu 47. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (−∞; 1).
C. (−1; 1).
D. (−∞; −1).


Câu 48. Phần thực√và phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt l √

A. Phần thực là √2 − 1, phần ảo là −√ 3.
B. Phần thực là 1√− 2, phần ảo là −√ 3.
D. Phần thực là 2 − 1, phần ảo là 3.
C. Phần thực là 2, phần ảo là 1 − 3.
Câu 49. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 11.
B. 12.
C. 4.
D. 10.
Câu 50. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) =
.
B. f 0 (0) = ln 10.
C. f 0 (0) = 10.

D. f 0 (0) = 1.
ln 10
Câu 51. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD

√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng


a 2
a 2
.
B. a 2.
.
C. 2a 2.
D.
A.
2
4
Câu 52. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. Vơ nghiệm.
C. 2.
D. 1.
Câu 53. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là


a3 3

a3 3
a3
a3 3
A.
.
B.
.
C.
.
D.
.
4
12
4
8
Câu 54. Cho

√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 17.
C. |z| = 10.
D. |z| = 17.
Câu 55. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Trang 4/10 Mã đề 1



Câu 56. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B.
.
C.
.
D. a3 .
A.
12
6
24
mx − 4
Câu 57. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 34.
C. 45.
D. 26.

Câu 58. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã




√ cho là
πa3 6
πa3 3
πa3 3
πa3 3
.
B. V =
.
C. V =
.
D. V =
.
A. V =
6
6
3
2
Câu 59. Khối đa diện đều loại {3; 4} có số đỉnh
A. 8.
B. 10.
C. 6.
D. 4.
1
Câu 60. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 2 ≤ m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 0 < m ≤ 1.
!

5 − 12x
= 2 có bao nhiêu nghiệm thực?
Câu 61. [2] Phương trình log x 4 log2
12x − 8
A. 1.
B. 2.
C. Vô nghiệm.
D. 3.
Câu 62. [1] Hàm số nào đồng√biến trên khoảng (0; +∞)?
A. y = loga x trong đó a = 3 − 2.
B. y = log π4 x.
C. y = log 41 x.
D. y = log √2 x.
Câu 63. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m ≤ .
C. m > .
D. m ≥ .
4
4
4
4
Câu 64. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với √
đáy một góc 60◦ . Thể tích khối


√ chóp S .ABCD là
3
3
3

a
a 3
2a 3
3
D.
A.
.
B.
.
C. a3 3.
.
6
3
3
Câu 65. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 72cm3 .
C. 46cm3 .
D. 27cm3 .
d = 30◦ , biết S BC là tam giác đều
Câu 66. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách

√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
9
26
16
13
Câu 67. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n2 lần.
B. 2n3 lần.
C. n3 lần.
D. n3 lần.
Câu 68. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m > 3.
C. m ≤ 3.
D. m ≥ 3.
Câu 69. Cho hàm số y = x3 − 2x2 + x + 1.

! Mệnh đề nào dưới đây đúng?
1
A. Hàm số đồng biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng (1; +∞).
3
!
!
1
1
C. Hàm số nghịch biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng −∞; .
3
3
Trang 5/10 Mã đề 1


Câu 70. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m ≤ .
C. m < .
D. m ≥ .
A. m > .
4
4
4
4
Câu 71. Khối đa diện đều loại {3; 4} có số cạnh

A. 10.
B. 8.
C. 6.
D. 12.
Câu 72. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC √là

√ với đáy và S C = a 3.3 √
a 3
2a3 6
a3 6
a3 3
.
B.
.
C.
.
D.
.
A.
2
4
9
12
Câu 73.
√ Thể tích của khối lăng√trụ tam giác đều có cạnh bằng 1 là:

3

3
3
3
A.
.
B.
.
C. .
D.
.
4
12
4
2
log7 16
Câu 74. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. −2.
B. 4.
C. −4.
D. 2.
Câu 75. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (−1; −7).
C. (1; −3).

D. (0; −2).


Câu 76. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
x+1
Câu 77. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. 1.
D. .
6
3
2
Câu 78. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Giảm đi n lần.
B. Tăng lên n lần.
C. Tăng lên (n − 1) lần. D. Khơng thay đổi.
Câu 79. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ Thể tích khối chóp S 3.ABC
√ là



3
a 3
a3 3
a3 3
a 2
.
B.
.
C.
.
D.
.
A.
12
6
12
4
Câu 80. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3

A. 3.
B. 2.
C. 1.
D.
.
3
Câu 81. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 8.
C. 30.
D. 12.
Câu 82. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 10 năm.
C. 12 năm.
D. 11 năm.
Câu 83. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > −1.
C. m > 1.

D. m > 0.
Trang 6/10 Mã đề 1


Câu 84. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11

9
A.
.
B. 5.
C. 7.
D. .
2
2
log(mx)
= 2 có nghiệm thực duy nhất
Câu 85. [3-1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m ≤ 0.
B. m < 0 ∨ m = 4.
C. m < 0 ∨ m > 4.
D. m < 0.



x=t




Câu 86. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)





z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
B. (x + 3)2 + (y + 1)2 + (z − 3)2 = .
A. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2
D. (x − 3) + (y + 1) + (z + 3) = .
C. (x − 3) + (y − 1) + (z − 3) = .
4
4
Câu 87. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Một tứ diện đều và bốn hình chóp tam giác đều.
B. Bốn tứ diện đều và một hình chóp tam giác đều.
C. Năm tứ diện đều.
D. Năm hình chóp tam giác đều, khơng có tứ diện đều.
3

Câu 88. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là

A. e2 .
B. e.
C. e5 .
D. e3 .
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 89. [3] Cho hàm số f (x) = ln 2017 − ln
x
2016
2017
4035
A.
.
B. 2017.
C.
.
D.
.
2017
2018
2018
Câu 90. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 2).
B. (0; +∞).

C. (−∞; 0) và (2; +∞). D. (0; 2).

Câu 91. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).

A. [−3; 1].
B. [1; +∞).
C. [−1; 3].
D. (−∞; −3].
Câu 92. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 68.
B. 34.
C.
.
D. 5.
17
Câu 93.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
A. 5.
B. 2.
C. 3.
D. 1.
Câu 94. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Khơng có.
C. Có một.
D. Có hai.
[ = 60◦ , S O

Câu 95. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S BC) bằng


a 57
2a 57
a 57
A.
.
B.
.
C. a 57.
D.
.
19
19
17
Trang 7/10 Mã đề 1


2x + 1
x+1
B. 1.

C. −1.

D.

B. 0.


C. 1.

D. 2.

C. −3.

D. 3.

Câu 96. Tính giới hạn lim

x→+∞

A. 2.
Câu 97. Tính lim
A. 3.

n−1
n2 + 2

1
.
2

2

Câu 98. Tính lim
x→3

x −9

x−3

B. +∞.
4x + 1
Câu 99. [1] Tính lim
bằng?
x→−∞ x + 1
A. 4.
B. −1.
A. 6.

C. −4.
D. 2.
x−2 x−1
x
x+1
Câu 100. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. (−3; +∞).
C. (−∞; −3).
D. [−3; +∞).

Câu 101. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
A. 27.
B. 18.
C. 12.
D.
2
Câu 102. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp

√ phẳng vng góc với 3(ABCD).
√ S .ABCD là
3
3

a 3
a 2
a 3
A. a3 3.
B.
.
C.
.
D.
.
4
2

2
Câu 103. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 5.
B. 1.
C. 3.

D. 2.

Câu 104. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
1
ab
ab
A. √
.
B. √
.
C. √
.
D. 2
.
a + b2
a2 + b2
2 a2 + b2
a2 + b2
Câu 105. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của


√mặt phẳng (AIC) có diện tích

√ hình chóp S .ABCD với
2
2
2
2
a 5
a 7
a 2
11a
.
B.
.
C.
.
D.
.
A.
16
8
4
32
1
Câu 106. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2) ∪ (−1; +∞). B. −2 < m < −1.
C. −2 ≤ m ≤ −1.

D. (−∞; −2] ∪ [−1; +∞).
Câu 107. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (1; 3; 2).
C. (2; 4; 4).
D. (2; 4; 3).


4n2 + 1 − n + 2
Câu 108. Tính lim
bằng
2n − 3
3
A. 1.
B. .
C. +∞.
D. 2.
2
Trang 8/10 Mã đề 1


Câu 109. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 40 .(3)10
C 20 .(3)30
C 20 .(3)20
C 10 .(3)40

B. 50 50 .
C. 50 50 .
D. 50 50 .
A. 50 50 .
4
4
4
4
Câu 110. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1637
23
1079
1728
A.
.
B.
.
C.
.
D.
.
4913
68
4913
4913
Câu 111. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 5.
B. V = 3.

C. V = 4.
D. V = 6.
Câu 112. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 10.
B. P = −21.
C. P = 21.
D. P = −10.
x+2
đồng biến trên khoảng
Câu 113. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. 2.
B. 3.
C. Vô số.
D. 1.
log2 240 log2 15
Câu 114. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. 3.
B. 4.
C. 1.
D. −8.
Câu 115. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 2.
B. 0.
C. 3.
D. 1.

1 3
Câu 116. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = −3, m = 4.
B. m = 4.
C. −3 ≤ m ≤ 4.
D. m = −3.
Câu 117. Tứ diện đều thuộc loại
A. {4; 3}.
B. {3; 3}.

C. {5; 3}.
D. {3; 4}.
1
Câu 118. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 < m ≤ 3.
C. 0 ≤ m ≤ 1.
D. 2 ≤ m ≤ 3.
Câu 119. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
B.
f (x)dx = f (x).
Z
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì


f (x)dx = F(x) + C.

D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
Câu 120.
[1233d-2] Mệnh đề nào sau đây sai?
Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
B.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.

A.

Trang 9/10 Mã đề 1



Câu 121. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = R \ {1; 2}.
C. D = [2; 1].
2

Câu 122. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 3ac
A.
.
B.
.
C.
.
c+2
c+2
c+1
Câu 123. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −6.
B. 5.
C. −5.

D. D = R.
D.

3b + 2ac

.
c+3

2

D. 6.

Câu 124. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 6.
B. 4.
C. 8.
D. 3.
Câu 125. Khối đa diện đều loại {5; 3} có số cạnh
A. 20.
B. 8.

C. 30.

D. 12.

3
2
x
Câu 126. [2]
2
√ Tìm m để giá trị nhỏ nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng √
A. m = ± 2.
B. m = ±3.
C. m = ±1.

D. m = ± 3.

Câu 127. Xác định phần ảo của √
số phức z = ( 2 + 3i)2

A. 7.
B. 6 2.
C. −6 2.
D. −7.

Câu 128. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng BD và S C bằng



a 6
a 6
a 6
A.
.
B. a 6.
.
D.
.
C.
6
2
3
Câu 129. Hàm số nào sau đây khơng có cực trị

1
x−2
.
D. y = x + .
A. y = x3 − 3x.
B. y = x4 − 2x + 1.
C. y =
2x + 1
x
Câu 130. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
A. 1.
B. .
C. 2.
D.
.
2
2
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B


2.

3.

B

4.

B
D

7.

C

6.

D

8. A

9.

10. A

B

11. A


12.

B

13. A

14.

B

15.

16.

D

18. A

B

17.

D

19.

D

20.


D

21.

C

22.

D

23.

C
C

24.

C

25.

26.

C

27.

28. A

29.


30. A

31. A

B
D

32.

D

33.

D

34.

D

35.

D

36.

37. A

B


38. A

39.

40. A

41. A

42.

D

43.

44.

D

45.

46.

B

49.
B

B
C
B


51. A

52.

D

53.

54. A

55.

56. A

57.

58.

D

47.

48. A
50.

B

D
C

B

59.

C

60. A

C

61. A

62.

D

63.

64.

D

65.

D

66.

D


67.

D

68.

D

69.
1

B

C


70.

71.

B

72.

D

73. A

76. A


77. A

78. A

79.

80.

D

75.

C

74.

D

C
D

81.

B

82.

D

83.


B

84.

D

85.

B

86.

D

87. A

88.

C

89.

90.

C

91. A

92.


C

93.

94. A

95. A

96. A

97.

98. A

99. A

100. A

101.

102.

D

105.
C

109.


110. A

111.
B
D

116. A
B
D

120.
122.

B
D

124.
126.

C

D
B
D
C

115.

B


117.

B

119.

D

121.

D

123.

C

125.

C

127.

128. A
130.

B

113. A

114.

118.

B

107. A

108. A
112.

B

103.

104. A
106.

C

129.
C

2

B
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×