Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (137)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.64 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
D. Cả ba đáp án trên.
Câu 2. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
Câu 3. Khối đa diện đều loại {5; 3} có số mặt
A. 12.
B. 8.

C. 30.

D. 20.

Câu 4.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm√min |z − 1 − i|.
B. 1.


C. 2.
D. 2.
A. 10.
Câu 5. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m > .
C. m < .
D. m ≥ .
4
4
4
4
Câu 6. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. 2.
C. Vô số.
D. 3.
Câu 7. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. m ≥ 3.
C. −2 ≤ m ≤ 2.
D. −3 ≤ m ≤ 3.
Câu 8. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1

1
A. .
B. .
C. .
D. 4.
2
8
4
x−1
y
z+1
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. −x + 6y + 4z + 5 = 0.
B. 2x − y + 2z − 1 = 0.
C. 10x − 7y + 13z + 3 = 0.
D. 2x + y − z = 0.

Câu 9. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

Câu 10. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 8.

C. 10.


D. 4.

Câu 11. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. n lần.
C. 3n3 lần.
D. n3 lần.
Câu 12. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. n3 lần.
C. 2n3 lần.
D. 2n2 lần.
Câu 13. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) có giá trị lớn nhất trên K.

B. f (x) có giá trị nhỏ nhất trên K.
D. f (x) xác định trên K.

Câu 14. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
Trang 1/10 Mã đề 1


(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.


B. 2.

C. 1.

D. 3.

Câu 15. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 16 m.
B. 8 m.
C. 12 m.
D. 24 m.
d = 60◦ . Đường chéo
Câu 16. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





a3 6
4a3 6
2a3 6
3
A.

.
B. a 6.
C.
.
D.
.
3
3
3
2n − 3
Câu 17. Tính lim 2
bằng
2n + 3n + 1
A. −∞.
B. 1.
C. 0.
D. +∞.
2

2

Câu 18. [3-c] Giá trị nhỏ nhất √
và giá trị lớn nhất của hàm √
số f (x) = 2sin x + 2cos x lần lượt
√ là
C. 2 2 và 3.
D. 2 và 2 2.
A. 2 và 3.
B. 2 và 3.
0 0 0 0

0
Câu 19.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 3
a 6
A.
.
B.
.
C.
.
D.
.
3
7
2
2

Câu 20. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3 3
a3 3
a3
3
.

C.
.
D.
.
A. a .
B.
3
6
2
Câu 21. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
A. .
B. 2.
C. 1.
2

D.

ln 2
.
2

Câu 22. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 7.
B. 3.
C. 2.
D. 1.
Câu 23. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 2.

C. 1.
D. 3.
Câu 24. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 20.

C. 30.

Câu 25. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (−∞; 0) và (2; +∞). C. (0; +∞).

D. 12.
D. (−∞; 2).

Câu 26. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
9
1
1
2
A.
.
B.
.
C. .
D. .
10
10
5

5
Câu 27. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 5 mặt.
B. 4 mặt.
C. 6 mặt.

D. 3 mặt.
Trang 2/10 Mã đề 1


Câu 28. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.

1
3|x−1|

= 3m − 2 có nghiệm duy

B. 1.

C. 2.
D. 3.
x
x−3 x−2 x−1
Câu 29. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham

x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (−∞; 2).
C. (−∞; 2].
D. (2; +∞).
q
2
Câu 30. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 2].
C. m ∈ [0; 1].
D. m ∈ [−1; 0].
Câu 31. [12214d] Với giá trị nào của m thì phương trình
A. 2 < m ≤ 3.

B. 0 ≤ m ≤ 1.

1
3|x−2|

= m − 2 có nghiệm

C. 0 < m ≤ 1.


D. 2 ≤ m ≤ 3.

Câu 32. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
1
B. Hàm số nghịch biến trên khoảng (1; +∞).
A. Hàm số nghịch biến trên khoảng ; 1 .
3!
!
1
1
C. Hàm số đồng biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng −∞; .
3
3
Câu 33. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
z
x+1 y−5
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
d:
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (3; 4; −4).
B. ~u = (2; 1; 6).
C. ~u = (2; 2; −1).
D. ~u = (1; 0; 2).

Câu 34. [1] Tính lim
x→3

A. 1.

x−3
bằng?
x+3
B. 0.

C. −∞.

D. +∞.

Câu 35. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
A.
.
B.
.
C.
.
D. a 6.
3

6
2
Câu 36. Trong khơng gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; 3; 1).
C. A0 (−3; −3; 3).
D. A0 (−3; 3; 3).
Câu 37. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d nằm trên P.
C. d ⊥ P.
D. d song song với (P).
Câu 38. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 3.
B. 1.
C. 2.
Câu 39. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 = 2 x . ln 2.
B. y0 =
.
ln 2
Câu 40. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.

D. 0.
1

C. y0 = 2 x . ln x.


D. y0 =

C. Khối 12 mặt đều.

D. Khối tứ diện đều.

2 x . ln

x

.

Trang 3/10 Mã đề 1


Câu 41. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3 √

2 3
.
D. 3.

A. 1.
B. 2.
C.
3
Câu 42. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 216 triệu.
B. 212 triệu.
C. 210 triệu.
D. 220 triệu.
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
Câu 43. [12210d] Xét các số thực dương x, y thỏa mãn log3
x + 2y
Pmin của P = x +
√ y.



18 11 − 29
2 11 − 3
9 11 − 19
9 11 + 19
A. Pmin =
. B. Pmin =
.
C. Pmin =

. D. Pmin =
.
21
3
9
9
Câu 44. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 3.
C. 4.
D. 2.
Câu 45. [4] Cho lăng trụ
và P lần lượt là tâm của
A, B, C, M,
√ N, P bằng
20 3
A.
.
3
5
Câu 46. Tính lim
n+3
A. 0.

ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh

14 3
B.
.

3


C. 8 3.


D. 6 3.

B. 1.

C. 3.

D. 2.

Câu 47. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 4.
B. 12.
C. 10.
D. 11.
Câu 48. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim [ f (x)g(x)] = ab.
B. lim
= .
x→+∞
x→+∞ g(x)
b

C. lim [ f (x) − g(x)] = a − b.
D. lim [ f (x) + g(x)] = a + b.
x→+∞

x→+∞

Câu 49. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 30.

C. 8.

D. 20.

Câu 50. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 30.

C. 12.

D. 20.

d = 300 .
Câu 51. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V của khối lăng trụ đã cho.

3


a3 3
3a 3
3
3
A. V =
.
B. V = 3a 3.
C. V = 6a .
D. V =
.
2
2
Câu 52. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.

Câu 53. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. − .
B. 3.
C. .
D. −3.
3
3
Trang 4/10 Mã đề 1


!
5 − 12x
Câu 54. [2] Phương trình log x 4 log2

= 2 có bao nhiêu nghiệm thực?
12x − 8
A. Vơ nghiệm.
B. 3.
C. 1.
D. 2.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 55. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 3
a3 2
a3 3
2
.
B. 2a 2.
.
D.
.
C.
A.
12
24
24
3

Câu 56. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là

A. e3 .
B. e2 .
C. e.

D. e5 .
[ = 60◦ , S A ⊥ (ABCD).
Câu 57. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối
√chóp S .ABCD là
3
3
3

a 2
a 3
a 2
.
B.
.
C.
.
D. a3 3.
A.
4
12
6
x
Câu 58. [12211d] Số nghiệm của phương trình 12.3 + 3.15 x − 5 x = 20 là
A. 1.

B. 2.
C. Vô nghiệm.
D. 3.
2

Câu 59. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
2
1
B. √ .
C. 3 .
A. 2 .
e
e
2 e
Câu 60. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m , 0.
C. m > 0.

D.

1
.
2e3

D. m = 0.

Câu 61. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho

tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 15 tháng.
C. 18 tháng.
D. 17 tháng.
Câu 62. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = R \ {1}.

C. D = R \ {0}.

D. D = (0; +∞).

Câu 63. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ tứ giác đều là hình lập phương.
Câu 64. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
B. a 3.
C. 2a 6.
D.
.

A. a 6.
2

Câu 65. [1] Biết log6 a = 2 thì log6 a bằng
A. 6.
B. 108.
C. 4.
D. 36.
log(mx)
Câu 66. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m > 4.
B. m < 0 ∨ m = 4.
C. m < 0.
D. m ≤ 0.
Câu 67. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
A. 2.
B. −2.
C. − .
2
Câu 68. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.
C. Khối lập phương.

D.

1

.
2

D. Khối bát diện đều.
Trang 5/10 Mã đề 1


!
!
!
4x
1
2
2016
Câu 69. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
.
D. T = 2016.
A. T = 1008.
B. T = 2017.
C. T =
2017
Câu 70. [2] Đạo hàm của hàm số y = x ln x là

A. y0 = 1 + ln x.
B. y0 = 1 − ln x.

C. y0 = x + ln x.

D. y0 = ln x − 1.

Câu 71. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (0; 2).
C. (2; +∞).

D. R.

Câu 72. [1] Hàm số nào đồng√biến trên khoảng (0; +∞)?
A. y = loga x trong đó a = 3 − 2.
B. y = log π4 x.
D. y = log √2 x.
C. y = log 41 x.

x2 + 3x + 5
Câu 73. Tính giới hạn lim
x→−∞
4x − 1
1
A. 0.
B. .
C. 1.
4


1
D. − .
4

Câu 74. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 6).
B. (1; 3; 2).
C. (2; 4; 4).
D. (2; 4; 3).
Câu 75. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.
C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Hai hình chóp tam giác.
Câu 76. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. −5.
B. 5.
C. −6.
2

D. 6.

Câu 77. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục ảo.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.
Câu 78. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].

Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1079
23
1728
1637
.
B.
.
C.
.
D.
.
A.
4913
4913
68
4913
8
Câu 79. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 64.
B. 81.
C. 96.
D. 82.
d = 120◦ .
Câu 80. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.
B. 2a.

C. 3a.
D.
.
2
Câu 81. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = 0.
C. m = −1.

D. m = −3.
Trang 6/10 Mã đề 1


Câu 82. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a

a3 15
a3
a3 5
a3 15
A.
.
B.
.
C.
.
D.
.
25
5

3
25
!
1
1
1
Câu 83. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 2.
B. 0.
C. 1.
D. .
2
Câu 84. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 387 m.
C. 1587 m.
D. 25 m.
Câu 85. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?

Câu 86. [3-12217d] Cho hàm số y = ln
x
+
1
A. xy0 = ey + 1.
B. xy0 = −ey − 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.
Câu 87. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 4.
C. ln 12.
D. ln 10.
Câu 88. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
10a 3
A. 40a3 .
B.
.
C. 10a3 .
D. 20a3 .
3
2n + 1
Câu 89. Tìm giới hạn lim
n+1
A. 2.
B. 3.
C. 1.

D. 0.
2n + 1
Câu 90. Tính giới hạn lim
3n + 2
3
2
1
C. .
D. .
A. 0.
B. .
2
2
3

2
Câu 91. [4-1228d] Cho phương trình (2 log3 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 64.
C. 62.
D. 63.
Câu 92. Khối đa diện đều loại {3; 4} có số đỉnh
A. 6.
B. 4.
C. 10.
D. 8.
x−2 x−1
x
x+1

+
+
+
và y = |x + 1| − x − m (m là tham
Câu 93. [4-1212d] Cho hai hàm số y =
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. (−∞; −3).
C. (−∞; −3].
D. [−3; +∞).
Câu 94. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim+ f (x) = lim− f (x) = +∞.
C. lim+ f (x) = lim− f (x) = a.
x→a

x→a

x→a

x→a

D. lim f (x) = f (a).
x→a

Câu 95. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức

trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
Trang 7/10 Mã đề 1


được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém môn Toán nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm môn Toán là
C 10 .(3)40
C 20 .(3)30
C 40 .(3)10
C 20 .(3)20
A. 50 50 .
B. 50 50 .
C. 50 50 .
D. 50 50 .
4
4
4
4
2

Câu 96. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 5.
B. 6.
C. 8.

D. 7.

Câu 97. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.

C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 98. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. −2 + 2 ln 2.
C. 4 − 2 ln 2.

D. e.

Câu 99. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun z.




5 13
B. 26.
C.
.
D. 2 13.
A. 2.
13
Câu 100. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m > 3.
C. m ≤ 3.
D. m < 3.
1 + 2 + ··· + n
Câu 101. [3-1132d] Cho dãy số (un ) với un =

. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = .
2
C. lim un = 1.
D. lim un = 0.
mx − 4
Câu 102. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 45.
B. 26.
C. 34.
D. 67.
Câu 103. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = R.
C. D = R \ {1; 2}.
2

D. D = [2; 1].

Câu 104. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp ngữ giác.
C. Hai khối chóp tứ giác.
D. Hai khối chóp tam giác.
Câu 105. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng

nhau?
A. 6.
B. 3.
C. 4.
D. 8.
Câu 106. Khối lập phương thuộc loại
A. {4; 3}.
B. {3; 3}.

C. {3; 4}.

D. {5; 3}.

Câu 107. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 2 nghiệm.
B. 1 nghiệm.
C. Vơ nghiệm.
D. 3 nghiệm.

Câu 108. Thể tích của khối lập phương có cạnh bằng a 2 √


2a3 2
A. V = 2a3 .
B. 2a3 2.
C.
.
D. V = a3 2.
3
Câu 109. [4-1246d] Trong tất cả

√ các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn√nhất của |z|
A. 2.
B. 5.
C. 1.
D. 3.
Trang 8/10 Mã đề 1


2
Câu 110. Tính
√ mơ đun của số phức z biết (1 + 2i)z = 3 + 4i. √4
A. |z| = 2 5.
B. |z| = 5.
C. |z| = 5.

D. |z| =

Câu 111. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (−1; −7).
C. (0; −2).

D. (2; 2).


5.

Câu 112. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim− f (x) = f (b).

B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

x→a

x→b

C. lim+ f (x) = f (a) và lim+ f (x) = f (b).

x→a

x→b

x→a

x→b

D. lim− f (x) = f (a) và lim+ f (x) = f (b).

a
1
+
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
C. 7.
D. 4.

Câu 113. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) =

A. 1.

B. 2.

Câu 114. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 4.
C. 2.
Câu 115. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 1.
B. m > 0.
C. m ≥ 0.
log2 240 log2 15
Câu 116. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. −8.
B. 3.
C. 4.

D. −2.
D. m > −1.

D. 1.

Câu 117. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
đường thẳng d :

=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x−2 y−2 z−3
x−2 y+2 z−3
A.
=
=
.
B.
=
=
.
2
3
4
2
2
2
x y−2 z−3
x y z−1
C. =

=
.
D. = =
.
2
3
−1
1 1
1


4n2 + 1 − n + 2
Câu 118. Tính lim
bằng
2n − 3
3
A. 1.
B. .
C. 2.
D. +∞.
2
Câu 119. [1] Tập
! xác định của hàm số! y = log3 (2x + 1) là
!
!
1
1
1
1
A. − ; +∞ .

B.
; +∞ .
C. −∞; .
D. −∞; − .
2
2
2
2



x = 1 + 3t




Câu 120. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi




z = 1
qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là












x
=
−1
+
2t
x
=
1
+
7t
x
=
−1
+
2t
x = 1 + 3t

















A. 
.
C. 
y = −10 + 11t . B. 
y=1+t
y = −10 + 11t . D. 
y = 1 + 4t .

















z = −6 − 5t
z = 1 + 5t
z = 6 − 5t
z = 1 − 5t
Câu 121. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
C.
.
D.
.
A. a3 .
B.
24
6
12
Trang 9/10 Mã đề 1


Câu 122. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó
Q0 là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số
lượng vi khuẩn đạt 100.000 con?
A. 20.
B. 24.

C. 15, 36.
D. 3, 55.
Câu 123. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= +∞.
B. Nếu lim un = a > 0 và lim vn = 0 thì lim
vn !
un
C. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
!
un
= −∞.
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
vn
Câu 124. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi
G la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
15

9
6
18
x−3 x−2
x−3
x−2
Câu 125. [12212d] Số nghiệm của phương trình 2 .3 − 2.2 − 3.3 + 6 = 0 là
A. 1.
B. 3.
C. 2.
D. Vô nghiệm.
Câu 126. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 12 năm.
C. 14 năm.
D. 10 năm.
1
Câu 127. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (1; +∞).
C. (−∞; 3).
D. (1; 3).
Câu 128. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = S h.
B. V = S h.

C. V = S h.
D. V = 3S h.
3
2
Câu 129. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 5
a3 3
A.
.
B.
.
C.
.
D.
.
12
6
4
12
Câu 130. Tính diện tích hình phẳng
giới hạn bởi các đường y = xe x , y = 0, x = 1.

3
3
1
A. 1.

B.
.
C. .
D. .
2
2
2
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

2.

B

3. A

4.

B

5. A


6.

B

D

7.
9.

C

11.

D

10.

B

12.

B

13. A

14.

15. A


16.

17.

D
B

18.

C

C
D

20.

19. A
21.

C

8.

B

23.

22.
C


24.

25.

B

26. A

27.

B

28.

29. A

30.

31. A

32. A

33.

D

34.

C
B

B
D
B

36.

D

37. A

38.

D

39. A

40.

D

35.

B

41.

B

42.


43.

B

44.

45.
47.

D

B
C

46. A

B

48.

B

49. A

50.

B

51. A


52.

53.

C

54.

55.

C

56.

57. A

58. A

59. A

60.

61. A

62. A

63.

C


64. A

65.

C

66.

67.

68.

B
1

D
C
D
B

B
D


69. A
71.

70. A

73.


D

74. A

75.

D

76. A

77.

D

78. A

79.

D

72.

B

80.

B

81. A


D

82. A
C

83.

84. A
86.

D

87. A

88.

D

89. A

90.

D

D

85.

91.


C

92. A

93.

C

94.

D

96.

D

98.

D

95.

D

97.

C

99.


C

100. A

101.

B

102.

103.

B

104. A

105.

B

106. A

107. A

108.

109. A

110.


111.

C

112.

113.

C

114.

115.

D

116. A

117.

D

118. A

119. A
121.
123.

D

B

126. A
128.

2

C
B
D

C

122.

C

125.

C

129. A

130. A

B

120.

127. A

B

C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×