TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó là:
A. 46cm3 .
B. 64cm3 .
C. 72cm3 .
D. 27cm3 .
Câu 2. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 20.
C. 3, 55.
D. 24.
1
Câu 3. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = R.
C. D = (1; +∞).
D. D = R \ {1}.
Câu 4. Tìm m để hàm số y = x − 2(m + 1)x − 3 có 3 cực trị
A. m ≥ 0.
B. m > −1.
C. m > 0.
D. m > 1.
4
2
Câu 5. [1] Đạo hàm của làm số y = log x là
1
ln 10
1
1
A. y0 =
.
B. y0 =
.
C.
.
D. y0 = .
x ln 10
x
10 ln x
x
Câu 6. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. 4.
D. .
8
4
2
Câu 7. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều. C. Khối tứ diện đều.
D. Khối lập phương.
Câu 8. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ√thức |z − 1 + 3i| = 3. Tìm√min |z − 1 − i|.
A. 2.
B. 1.
C. 10.
D. 2.
Câu 9. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 2ac
3b + 3ac
3b + 3ac
A.
.
B.
.
C.
.
D.
.
c+3
c+2
c+1
c+2
1
Câu 10. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 2 < m ≤ 3.
C. 0 < m ≤ 1.
D. 0 ≤ m ≤ 1.
Câu 11. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
3
4a 3
5a3 3
2a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
3
3
3
2
Câu 12. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 13. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(−4; −8)(.
C. A(4; 8).
D. A(4; −8).
Câu 14. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 1.
B. T = e + .
C. T = e + 3.
D. T = 4 + .
e
e
Trang 1/10 Mã đề 1
d = 120◦ .
Câu 15. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
D. 4a.
A. 3a.
B. 2a.
C.
2
Câu 16. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n3 lần.
C. n lần.
D. n2 lần.
√
√
Câu 17. Phần thực√và phần ảo của số √
phức z = 2 − 1 − 3i lần lượt √l
√
3.
B. Phần thực là √2, phần ảo là 1 − √
3.
A. Phần thực là 2 −√1, phần ảo là √
C. Phần thực là 1 − 2, phần ảo là − 3.
D. Phần thực là 2 − 1, phần ảo là − 3.
Câu 18. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị nhỏ nhất trên K.
C. f (x) liên tục trên K.
B. f (x) xác định trên K.
D. f (x) có giá trị lớn nhất trên K.
tan x + m
Câu 19. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. (−∞; 0] ∪ (1; +∞). B. (1; +∞).
C. [0; +∞).
D. (−∞; −1) ∪ (1; +∞).
3a
, hình chiếu vng
Câu 20. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng
√
a
a
2a
a 2
A. .
B. .
C.
.
D.
.
4
3
3
3
x+2
bằng?
Câu 21. Tính lim
x→2
x
A. 2.
B. 0.
C. 1.
D. 3.
Câu 22. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e.
B. .
C. 2e + 1.
e
!
1
1
1
Câu 23. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
B. .
C. 2.
A. .
2
2
Câu 24.! Dãy số nào sau đây có giới
!n hạn là 0?
!n
n
5
4
5
.
B.
.
C. − .
A.
e
3
3
D. 3.
D. +∞.
!n
1
D.
.
3
q
Câu 25. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [−1; 0].
C. m ∈ [0; 1].
D. m ∈ [0; 2].
Câu 26. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d nằm trên P hoặc d ⊥ P.
C. d ⊥ P.
D. d song song với (P).
Câu 27. Bát diện đều thuộc loại
A. {4; 3}.
B. {5; 3}.
C. {3; 4}.
D. {3; 3}.
3
Câu 28. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 120 cm2 .
Trang 2/10 Mã đề 1
1 − 2n
Câu 29. [1] Tính lim
bằng?
3n + 1
1
2
A. .
B. .
3
3
Câu 30. Phát biểu nào sau đây là sai?
A. lim un = c (Với un = c là hằng số).
C. lim qn = 1 với |q| > 1.
C. 1.
2
D. − .
3
1
B. lim √ = 0.
n
1
D. lim k = 0 với k > 1.
n
9x
Câu 31. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. .
B. −1.
C. 1.
D. 2.
2
Câu 32. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. (−∞; +∞).
B. (1; 2).
C. [1; 2].
D. [−1; 2).
Câu 33. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. log2 13.
C. log2 2020.
D. 13.
d = 60◦ . Đường chéo
Câu 34. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
3
√
2a3 6
a
6
4a3 6
.
B.
.
C. a3 6.
D.
.
A.
3
3
3
√
Câu 35. [1] Biết log6 a = 2 thì log6 a bằng
A. 108.
B. 6.
C. 4.
D. 36.
Câu 36. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
Câu 37. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
C.
.
D.
.
A. a3 .
B.
24
12
6
! x3 −3mx2 +m
1
Câu 38. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m = 0.
C. m , 0.
D. m ∈ (0; +∞).
2−n
Câu 39. Giá trị của giới hạn lim
bằng
n+1
A. 2.
B. −1.
C. 0.
D. 1.
Câu 40. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 144.
D. 24.
Z 1
6
2
3
Câu 41. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. 2.
B. −1.
C. 4.
C. 6.
D. 4.
Câu 42. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√
√ chóp S .ABCD là
√
3
3
a 6
a 3
a3 2
a3 3
A.
.
B.
.
C.
.
D.
.
48
24
16
48
Trang 3/10 Mã đề 1
Câu 43. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 30.
Câu 44. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 12 cạnh.
Câu 45. [2] Tổng các nghiệm của phương trình 2
A. −5.
B. 5.
C. 20.
D. 8.
C. 9 cạnh.
D. 11 cạnh.
x2 +2x
= 82−x là
C. −6.
D. 6.
Câu 46. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
1
Câu 47. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. −2 ≤ m ≤ −1.
C. (−∞; −2] ∪ [−1; +∞). D. (−∞; −2) ∪ (−1; +∞).
Câu 48. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m > .
C. m < .
D. m ≥ .
4
4
4
4
Câu 49. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là 4.
B. Phần thực là 3, phần ảo là −4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là 3, phần ảo là 4.
Câu 50. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim+ f (x) = f (a) và lim− f (x) = f (b).
D. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→b
x→a
x→b
2
Câu 51. Tổng diện tích các mặt của một khối lập phương bằng 96cm . Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 91cm3 .
C. 48cm3 .
D. 84cm3 .
Câu 52. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
B. F(x) = G(x) trên khoảng (a; b).
C. Cả ba câu trên đều sai.
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
Câu 53. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 3.
C. Vô nghiệm.
D. 2.
Câu 54. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu
!
! của A lên BC là
7
8
5
; 0; 0 .
B.
; 0; 0 .
C.
; 0; 0 .
D. (2; 0; 0).
A.
3
3
3
Câu 55. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = 2.
C. y(−2) = 22.
D. y(−2) = −18.
Câu 56. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 + 2e
1 − 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
4e + 2
4e + 2
4 − 2e
D. m =
1 + 2e
.
4 − 2e
Trang 4/10 Mã đề 1
Câu 57. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Hai khối chóp tam giác.
Câu 58. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 4.
C. 3.
D. 6.
√
√
Câu 59. Tìm giá trị lớn nhất của hàm
√
√ số y = x + 3 + 6√− x
C. 3 2.
D. 2 3.
A. 3.
B. 2 + 3.
Câu 60. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. 7, 2.
C. −7, 2.
D. 72.
Câu 61. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Tăng lên n lần.
B. Tăng lên (n − 1) lần. C. Giảm đi n lần.
D. Không thay đổi.
Câu 62. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 3
a3 5
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
4
12
6
Câu 63. [3] Biết rằng giá trị lớn nhất của hàm số y =
ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 135.
B. S = 22.
C. S = 32.
D. S = 24.
Câu 64. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.
C. Khối bát diện đều.
D. Khối 12 mặt đều.
Câu 65. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (2; 4; 3).
C. (1; 3; 2).
D. (2; 4; 6).
Câu 66. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
5
13
23
A.
.
B. − .
C.
.
D. −
.
25
16
100
100
!
5 − 12x
Câu 67. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. Vô nghiệm.
B. 3.
C. 2.
D. 1.
x+3
Câu 68. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. Vô số.
B. 2.
C. 1.
D. 3.
!
x+1
Câu 69. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
2016
4035
A.
.
B. 2017.
C.
.
D.
.
2018
2017
2018
Câu 70. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 1.
C. 2.
D. 0.
Trang 5/10 Mã đề 1
Câu 71. Khối đa diện đều loại {3; 5} có số cạnh
A. 12.
B. 30.
C. 8.
D. 20.
Câu 72. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 212 triệu.
B. 220 triệu.
C. 210 triệu.
D. 216 triệu.
Câu 73. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Trục thực.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Đường phân giác góc phần tư thứ nhất.
Câu 74. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).
B. Cả ba mệnh đề.
C. (I) và (III).
D. (I) và (II).
Câu 75. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 1587 m.
C. 387 m.
D. 25 m.
Câu 76. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
đến đường√thẳng BD0 bằng
√
√
√
abc b2 + c2
c a2 + b2
b a2 + c2
a b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 77. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −1.
C. m = −3.
D. m = −2.
Câu 78. Khối đa diện đều loại {5; 3} có số mặt
A. 12.
B. 30.
D. 8.
C. 20.
Câu 79. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m > 3.
C. m ≥ 3.
D. m ≤ 3.
!
1
1
1
+
+ ··· +
Câu 80. Tính lim
1.2 2.3
n(n + 1)
3
A. 2.
B. 0.
C. 1.
D. .
2
0 0 0
Câu 81. Cho lăng trụ đều ABC.A B C có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√ C là
√
3
a 3
a3 3
a3
3
A.
.
B. a .
C.
.
D.
.
2
6
3
Trang 6/10 Mã đề 1
Câu 82. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 83. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1728
1079
23
1637
A.
.
B.
.
C.
.
D.
.
4913
4913
68
4913
1
ln x p 2
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
Câu 84. Gọi F(x) là một nguyên hàm của hàm y =
x
3
1
8
1
8
A. .
B. .
C. .
D. .
9
9
3
3
Câu 85. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8 √
A. m = ± 2.
B. m = ±1.
C. m = ±3.
D. m = ± 3.
√
x2 + 3x + 5
Câu 86. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. 0.
B. 1.
C. − .
D. .
4
4
√
Câu 87. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới
" đây?
!
5
5
A. 2; .
B. [3; 4).
C.
;3 .
D. (1; 2).
2
2
!
!
!
4x
1
2
2016
Câu 88. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2016.
B. T =
.
C. T = 1008.
D. T = 2017.
2017
√
Câu 89. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a 58
3a
a 38
3a 38
.
B.
.
C.
.
D.
.
A.
29
29
29
29
Câu 90. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C)√và (A0C 0 D) bằng
√
√
√
a 3
a 3
2a 3
A.
.
B.
.
C. a 3.
.
D.
3
2
2
Câu 91. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 18.
B. 12.
C.
.
D. 27.
2
1
Câu 92. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 4.
B. 1.
C. 2.
D. 3.
x−3 x−2 x−1
x
Câu 93. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (2; +∞).
C. (−∞; 2).
D. (−∞; 2].
Trang 7/10 Mã đề 1
Câu 94. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = 0.
C. x = −5.
D. x = −2.
x = 1 + 3t
Câu 95. [1232h] Trong không gian Oxyz, cho đường thẳng d :
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua
z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
trình là
x
=
1
+
3t
x
=
1
+
7t
x
=
−1
+
2t
x = −1 + 2t
A.
B.
.
C.
y = 1 + 4t .
y=1+t
y = −10 + 11t . D.
y = −10 + 11t .
z = 1 − 5t
z = 1 + 5t
z = −6 − 5t
z = 6 − 5t
Câu 96. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (1; −3).
C. (2; 2).
D. (0; −2).
Câu 97. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 9.
B. 0.
C. 13.
D. Không tồn tại.
Câu 98. [2] Tổng các nghiệm của phương trình 3
A. 3.
B. 4.
x2 −4x+5
= 9 là
C. 5.
D. 2.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 99. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là
√
√
√
a3 3
a3 2
a3 3
.
B.
.
C.
.
D. 2a2 2.
A.
12
24
24
n−1
Câu 100. Tính lim 2
n +2
A. 2.
B. 1.
C. 0.
D. 3.
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
Câu 101. [12210d] Xét các số thực dương x, y thỏa mãn log3
x + 2y
nhất Pmin của P√= x + y.
√
√
√
18 11 − 29
9 11 − 19
2 11 − 3
9 11 + 19
A. Pmin =
. B. Pmin =
. C. Pmin =
.
D. Pmin =
.
21
9
3
9
Câu 102. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a
a
a 3
A. .
B. a.
C. .
D.
.
2
3
2
1
Câu 103. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (1; 3).
C. (1; +∞).
D. (−∞; 3).
Câu 104. Tính lim
x→5
2
A. .
5
x2 − 12x + 35
25 − 5x
B. +∞.
C. −∞.
2
D. − .
5
Câu 105. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là 4.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là −1, phần ảo là −4.
√
Câu 106. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. Vơ số.
C. 64.
D. 63.
Trang 8/10 Mã đề 1
Câu 107. Dãy!số nào có giới hạn bằng!0?
n
n
6
−2
.
B. un =
.
A. un =
3
5
C. un =
x3 − 1
Câu 108. Tính lim
x→1 x − 1
A. 3.
B. +∞.
n3 − 3n
.
n+1
C. 0.
!2x−1
D. un = n2 − 4n.
D. −∞.
!2−x
3
3
≤
là
5
5
A. (−∞; 1].
B. [1; +∞).
C. (+∞; −∞).
D. [3; +∞).
t
9
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao
Câu 110. [4] Xét hàm số f (t) = t
9 + m2
cho f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 1.
B. Vơ số.
C. 2.
D. 0.
Câu 109. Tập các số x thỏa mãn
Câu 111. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa
√ hai đường thẳng S B và AD bằng
√
√
√
a 2
a 2
A.
.
B. a 3.
C.
.
D. a 2.
3
2
x
Câu 112. [2] Tổng các nghiệm của phương trình 6.4 − 13.6 x + 6.9 x = 0 là
A. 3.
B. 1.
C. 2.
D. 0.
Câu 113. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. .
B. −2.
C. − .
D. 2.
2
2
√
Câu 114. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. 1 nghiệm.
B. Vô nghiệm.
C. 2 nghiệm.
D. 3 nghiệm.
Câu 115. Trong khơng gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; 3; 3).
B. A0 (−3; −3; 3).
C. A0 (−3; 3; 1).
D. A0 (−3; −3; −3).
Câu 116. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình tam giác.
C. Hình lăng trụ.
D. Hình lập phương.
Câu 117. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng
√
√
√
√
a 2
a 2
B. 2a 2.
C.
.
D.
.
A. a 2.
2
4
Câu 118. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 9 mặt.
D. 4 mặt.
Câu 119. Tính lim
x→3
A. 6.
x2 − 9
x−3
B. −3.
C. +∞.
D. 3.
Câu 120. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
2
9
1
1
A. .
B.
.
C. .
D.
.
5
10
5
10
Câu 121. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. n3 lần.
C. 2n2 lần.
D. 2n3 lần.
Trang 9/10 Mã đề 1
1
Câu 122. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3
√
một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.
B. m = −3.
C. m = −3, m = 4.
D. m = 4.
Câu 123.
[1233d-2] Mệnh đề nào sau đây sai?
Z
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
B.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
A.
√
√
4n2 + 1 − n + 2
Câu 124. Tính lim
bằng
2n − 3
3
A. .
B. 1.
2
C. 2.
D. +∞.
√
Câu 125. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là
√
3
√
a3
a3 3
a 3
.
B.
.
C.
.
D. a3 3.
A.
3
4
12
4
0
Câu 126. [2] Cho hàm số f (x) = ln(x + 1). Giá trị f (1) bằng
1
ln 2
.
B. 2.
C. 1.
D. .
A.
2
2
Z 1
Câu 127. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
1
1
.
C. .
D. 1.
4
2
Câu 128. Trong các khẳng định sau, khẳng định nào sai?
√
A. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
C. Cả ba đáp án trên.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
x=t
Câu 129. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
y = −1 và hai mặt phẳng (P), (Q)
z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I
thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
B. (x − 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x + 3) + (y + 1) + (z + 3) = .
D. (x + 3) + (y + 1) + (z − 3) = .
4
4
Câu 130. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Bốn mặt.
C. Hai mặt.
D. Ba mặt.
A. 0.
B.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
2. A
C
3.
5. A
4.
B
6.
B
7.
D
8.
B
9.
D
10.
B
11.
D
12.
13.
C
14.
15.
C
16.
D
17.
19.
B
21. A
23.
25.
C
B
33.
C
20.
C
22.
D
24.
D
B
30.
C
31.
B
28. A
D
29.
C
18.
26.
C
27.
D
C
32. A
B
34.
C
C
35.
C
36.
37.
C
38.
B
40.
B
39.
B
D
41.
43.
B
44. A
45. A
47.
46.
B
B
48. A
49. A
50.
51. A
52.
53. A
54.
55.
57.
D
42.
D
56.
B
C
D
C
B
58.
C
59.
C
60.
C
61.
C
62.
C
63.
C
64. A
65.
D
66.
D
67.
D
68.
D
1
70.
69. A
71.
B
72. A
C
73.
75. A
77.
D
79.
D
85. A
89.
D
76.
D
80.
81. A
83.
74.
78. A
C
C
87.
B
84.
B
86.
C
88.
C
90. A
B
92.
93. A
94. A
D
95.
B
98.
C
100.
101.
C
102.
103. A
C
B
108. A
B
111.
112.
C
116.
119. A
120.
B
B
B
122.
C
125. A
127.
C
118. A
C
123.
D
114.
B
117.
C
110.
115. A
129.
B
106. A
C
107. A
121.
D
104. A
105.
113.
B
96.
99.
109.
C
82.
91. A
97.
D
C
124.
B
126.
B
128. A
C
B
130.
2
B