Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (79)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.14 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vô nghiệm.
B. 2.
C. 3.
D. 1.
Câu 2. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim
= .
B. lim [ f (x)g(x)] = ab.
x→+∞ g(x)
x→+∞
b
C. lim [ f (x) − g(x)] = a − b.
D. lim [ f (x) + g(x)] = a + b.
x→+∞

x→+∞

Câu 3. Hàm số y = x3 − 3x2 + 4 đồng biến trên:


A. (0; +∞).
B. (−∞; 0) và (2; +∞). C. (0; 2).

D. (−∞; 2).
x+2
Câu 4. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. Vô số.
B. 2.
C. 1.
D. 3.
Câu 5. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 23.
B. 21.
C. 22.
D. 24.
Câu 6. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng (AB0C)
và (A0C√0 D) bằng



a 3
2a 3
a 3
A.
.

B.
.
C.
.
D. a 3.
3
2
2
Câu 7. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.
B. 2, 20 triệu đồng.
C. 3, 03 triệu đồng.
D. 2, 25 triệu đồng.
cos n + sin n
Câu 8. Tính lim
n2 + 1
A. −∞.
B. 0.
C. 1.
D. +∞.
Câu 9. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là

A. (II) và (III).

B. (I) và (II).

C. Cả ba mệnh đề.

Câu 10. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 24.

D. (I) và (III).

ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e

C. S = 32.

D. S = 135.
Trang 1/10 Mã đề 1



Câu 11. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.



√ tích khối chóp S .ABC3 √
3
a 2
a3 6
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
36
6
18
6
Câu 12. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 12.
C. 8.
D. 30.
Câu 13. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
x−2

Câu 14. Tính lim
x→+∞ x + 3
2
A. − .
B. 2.
C. −3.
D. 1.
3
Câu 15. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 8%.
B. 0, 6%.
C. 0, 7%.
D. 0, 5%.
Câu 16.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
B. 1.
C. 3.
D. 2.
A. 5.
Câu 17. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 + 2e
.
B. m =
.
C. m =
.

A. m =
4 − 2e
4 − 2e
4e + 2
Câu 18. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.
C. Khối 12 mặt đều.

D. m =

1 − 2e
.
4e + 2

D. Khối bát diện đều.

Câu 19. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 2.
C. y(−2) = 22.
D. y(−2) = 6.
Câu 20. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2

a 2
A. a 2.
B.
.
C. 2a 2.
D.
.
4
2
Z 1
Câu 21. Cho
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0

1
1
.
C. .
D. 1.
4
2
Câu 22. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 8 năm.
C. 9 năm.
D. 7 năm.
A. 0.


B.

Câu 23. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
1
Câu 24. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 1.
B. 3.
C. 2.
D. 4.
Trang 2/10 Mã đề 1


Câu 25. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 6 mặt.
C. 9 mặt.

D. 7 mặt.

Câu 26. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
9
23

5
B.
.
C.
.
D. −
.
A. − .
16
100
25
100
Câu 27. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
C. .
D. 3.
A. 1.
B. .
2
2
Câu 28. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
d = 300 .
Câu 29. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V của


√ khối lăng trụ đã cho.
3

a3 3
3a 3
3
3
A. V = 3a 3.
.
C. V = 6a .
D. V =
.
B. V =
2
2
x2 − 5x + 6
Câu 30. Tính giới hạn lim
x→2
x−2
A. 0.
B. 1.
C. −1.
D. 5.
Câu 31. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = R.

C. D = (0; +∞).


D. D = R \ {0}.

1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y


18 11 − 29
2 11 − 3
C. Pmin =
. D. Pmin =
.
21
3

Câu 32. [12210d] Xét các số thực dương x, y thỏa mãn log3
Pmin của P = x√+ y.
9 11 + 19
A. Pmin =
.
9

B. Pmin


9 11 − 19
=
.
9


Câu 33. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 2400 m.
B. 1202 m.
C. 6510 m.
D. 1134 m.
Câu 34. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = −21.
C. P = 21.
D. P = 10.
x−1 y z+1
Câu 35. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. −x + 6y + 4z + 5 = 0.
B. 2x + y − z = 0.
C. 10x − 7y + 13z + 3 = 0.
D. 2x − y + 2z − 1 = 0.

Câu 36. √
Thể tích của khối lập phương có cạnh bằng a 2


2a3 2

A.
.
B. V = a3 2.
C. 2a3 2.
D. V = 2a3 .
3
Câu 37. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m , 0.
C. m < 0.

D. m = 0.

Câu 38. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. .
B. 7.
C. 5.
D.
.
2
2
Trang 3/10 Mã đề 1



Câu 39. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng




3a 58
a 38
3a 38
3a
.
B.
.
C.
.
D.
.
A.
29
29
29
29
Câu 40. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Khơng có câu nào B. Câu (III) sai.
sai.

C. Câu (I) sai.

D. Câu (II) sai.


Câu 41. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 1200 cm2 .
C. 160 cm2 .
D. 120 cm2 .
1
Câu 42. [1] Giá trị của biểu thức log √3
bằng
10
1
1
B. − .
C. 3.
D. −3.
A. .
3
3
ln x p 2
1
Câu 43. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
8
1
1
B. .

C. .
D. .
A. .
9
9
3
3
Câu 44. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {3}.
C. {5}.
D. {2}.
log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m = 4.
D. m < 0.

Câu 45. [1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m > 4.

B. m ≤ 0.

Câu 46. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.424.000.
C. 102.423.000.

D. 102.016.000.
Câu 47. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Câu 48. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. V = 4π.
C. 8π.
D. 16π.
Câu 49. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 6.

C. 10.

D. 12.
Trang 4/10 Mã đề 1


 π
Câu 50. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


2 π4
3 π6
1 π

B.
C. 1.
D. e 3 .
A.
e .
e .
2
2
2
Câu 51. Cho
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.

A. |z| = 17.
B. |z| = 10.
C. |z| = 17.
D. |z| = 10.
Câu 52. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R.
B. D = [2; 1].
C. D = R \ {1; 2}.
2

D. D = (−2; 1).

Câu 53.
√ min |z − 1 − i|.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
A. 10.
B. 1.
C. 2.

D. 2.
Câu 54. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 6.

C. 4.

D. 8.

Câu 55. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim− f (x) = f (a) và lim− f (x) = f (b).
D. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b
√3
4
Câu 56. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
5
2
7

B. a 8 .
C. a 3 .
D. a 3 .
A. a 3 .
Câu 57. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −2.
B. m = 0.
C. m = −3.
D. m = −1.
!
x+1
Câu 58. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
4035
2016
A.
.
B.
.
C.
.
D. 2017.
2018
2018
2017
Câu 59. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e2 − 2; m = e−2 + 2.

C. M = e−2 + 2; m = 1.
D. M = e−2 + 1; m = 1.
Câu 60. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m ≥ 0.
B. m > 1.
C. m > 0.

D. m > −1.

Câu 61. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m > 3.
C. m ≥ 3.
D. m ≤ 3.
Câu 62. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. 9.
C. Không tồn tại.

D. 0.

Câu 63. Cho hàm số y = x + 3x . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
3

2


Câu 64. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 4 mặt.
C. 8 mặt.

D. 6 mặt.

Câu 65. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4
Trang 5/10 Mã đề 1



a3 3
A.
.
12


a3 3
B.
.
24



a3 3
C.
.
6


a3 3
D.
.
36

Câu 66. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của

√mặt phẳng (AIC) có diện tích

√ hình chóp S .ABCD với
2
2
2
2
a 7
a 5
11a
a 2
.

B.
.
C.
.
D.
.
A.
4
8
16
32
Câu 67. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
A. 3.

B. 2e + 1.

C. 2e.

D.

2
.
e

1
Câu 68. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 luôn đồng biến trên
3

một đoạn có độ dài bằng 24.
A. −3 ≤ m ≤ 4.

B. m = 4.
C. m = −3.
D. m = −3, m = 4.

x2 + 3x + 5
Câu 69. Tính giới hạn lim
x→−∞
4x − 1
1
1
B. − .
C. 1.
D. 0.
A. .
4
4
log 2x
Câu 70. [3-1229d] Đạo hàm của hàm số y =

x2
1
1 − 2 log 2x
1 − 2 ln 2x
1 − 4 ln 2x
.
B. y0 = 3
.
C. y0 =
.
D. y0 = 3

.
A. y0 =
3
3
2x ln 10
2x ln 10
x
x ln 10
1
Câu 71. [3-12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 0 < m ≤ 1.
C. 2 < m ≤ 3.
D. 2 ≤ m ≤ 3.
Câu 72. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Ba mặt.
C. Bốn mặt.

D. Năm mặt.

Câu 73. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 4 − 2 ln 2.
B. −2 + 2 ln 2.
C. e.

D. 1.

Câu 74. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác

S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.
.
C. a3 .
D.
.
6
12
24
Câu 75.√Biểu thức nào sau đây khơng có nghĩa
A. (− 2)0 .
B. 0−1 .

C.


−1.

−3

D. (−1)−1 .

1 3
x − 2x2 + 3x − 1.

3
C. (−∞; 1) và (3; +∞). D. (1; +∞).

Câu 76. Tìm tất cả các khoảng đồng biến của hàm số y =
A. (−∞; 3).

B. (1; 3).

Câu 77. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(4; −8).
C. A(4; 8).
D. A(−4; −8)(.
Câu 78. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
Trang 6/10 Mã đề 1


Câu 79. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
1
2
1
9
.
B.
.

C. .
D. .
A.
10
10
5
5
log7 16
Câu 80. [1-c] Giá trị của biểu thức
bằng
log7 15 − log7 15
30
A. 4.
B. −2.
C. −4.
D. 2.
Câu 81. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 72cm3 .
B. 46cm3 .
C. 27cm3 .
D. 64cm3 .
3a
Câu 82. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng √
a
a

2a
a 2
.
B. .
C. .
D.
.
A.
3
4
3
3
Câu 83. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp đôi.
C. Tăng gấp 4 lần.
D. Tăng gấp 8 lần.
Câu 84. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45√◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là
10a3 3
A.
.
B. 20a3 .
C. 40a3 .
D. 10a3 .
3
x−3
bằng?
Câu 85. [1] Tính lim

x→3 x + 3
A. 1.
B. −∞.
C. 0.
D. +∞.
1

Câu 86. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = R \ {1}.
C. D = (−∞; 1).

D. D = (1; +∞).

Câu 87. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab
1
ab
A. √
.
D.
.
B. √
.
C. 2
.

a + b2

2 a2 + b2
a2 + b2
a2 + b2
Câu 88. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 12.

C. 30.

D. 20.

Câu 89. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều sai.

C. Cả hai đều đúng.

Câu 90. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình tam giác.
C. Hình lập phương.
Câu 91. [1] Đạo hàm của làm số y = log x là
1
ln 10
A. y0 =
.
B. y0 = .

x
x

C.

1
.
10 ln x

D. Chỉ có (II) đúng.
D. Hình lăng trụ.
D. y0 =

1
.
x ln 10
Trang 7/10 Mã đề 1


Câu 92. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (−1; −7).
C. (1; −3).

D. (2; 2).

Câu 93. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −2.
B. x = −8.
C. x = −5.


D. x = 0.

Câu 94. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là√
3
3
a
2a 3
4a3 3
a3
A.
.
B.
.
C.
.
D.
.
6
3
3
3
Câu 95. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều. C. Khối 12 mặt đều.
D. Khối 20 mặt đều.
Câu 96. Giá trị của lim (3x2 − 2x + 1)
x→1


A. 1.

B. 3.

C. 2.

D. +∞.

Câu 97. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 3.
B. 2a 6.
C. a 6.
D.
.
2
1 − 2n
bằng?
Câu 98. [1] Tính lim
3n + 1
2
1
2
A. 1.

B. .
C. .
D. − .
3
3
3
2
3
7n − 2n + 1
Câu 99. Tính lim 3
3n + 2n2 + 1
2
7
A. - .
B. 1.
C. .
D. 0.
3
3
Câu 100.
√cạnh bằng a
√ Thể tích của tứ diện đều
3
3
a 2
a 2
.
B.
.
A.

12
6
Câu 101. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối lập phương.


a3 2
C.
.
4


a3 2
D.
.
2

C. Khối tứ diện đều.

D. Khối bát diện đều.

Câu 102. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a = loga 2.
C. log2 a = − loga 2.
D. log2 a =

.
log2 a
loga 2
Câu 103. Khối lập phương thuộc loại
A. {3; 4}.
B. {3; 3}.
C. {5; 3}.
D. {4; 3}.
2n + 1
Câu 104. Tính giới hạn lim
3n + 2
1
2
3
B. 0.
C. .
D. .
A. .
2
3
2
Câu 105. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích
hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 3.
B. 0, 5.
C. 0, 2.
D. 0, 4.
Câu 106. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6

2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 27 m.
C. 1587 m.
D. 25 m.
Trang 8/10 Mã đề 1


Câu 107. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. e2016 .
C. 22016 .
D. 1.
Câu 108. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vô số.
B. 3.
C. 2.
D. 1.
Câu 109. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 8 m.
C. 16 m.
D. 24 m.
Câu 110. [1225d] Tìm tham số thực m để phương
x≥1
A. m > 3.

B. m ≤ 3.
x+1
bằng
Câu 111. Tính lim
x→+∞ 4x + 3
1
A. 3.
B. .
3
Câu 112. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 12 cạnh.

trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
C. m < 3.

D. m ≥ 3.

C. 1.

D.

C. 11 cạnh.

D. 9 cạnh.

1
.
4


Câu 113. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
C.
.
D. 1.
A. 2.
B. .
2
2
Câu 114. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục thực.
B. Đường phân giác góc phần tư thứ nhất.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Trục ảo.
Câu 115. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của
P = xy + x + 2y + 17
A. −15.
B. −9.
C. −5.
D. −12.
Câu 116. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Một hình chóp tam giác và một hình chóp tứ giác.
C. Hai hình chóp tam giác.
D. Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 117. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 12.


C. 30.

Câu 118. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.
C. Số mặt của khối chóp bằng 2n+1.
D. Số đỉnh của khối chóp bằng 2n + 1.
!
1
1
1
+ ··· +
Câu 119. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
3
A. 2.
B. +∞.
C. .
2

D. 10.

D.

5
.
2
Trang 9/10 Mã đề 1



Câu 120. √
Tính mơ đun của số phức z biết (1 + 2i)z2 = 3 + 4i. √
4
B. |z| = 5.
C. |z| = 2 5.
A. |z| = 5.


Câu 121.
Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=
x
+
3
+
6−x


A. 2 3.
B. 3 2.

C. 3.
Câu 122. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 8.

C. 10.

Câu 123. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 4}.
C. {4; 3}.
2n − 3
bằng
Câu 124. Tính lim 2
2n + 3n + 1
A. 0.
B. +∞.
C. 1.

D. |z| =


5.

3.

D. 2 +
D. 6.

D. {3; 3}.


D. −∞.

log3 12

Câu 125. [1] Giá trị của biểu thức 9
bằng
A. 144.
B. 2.
C. 4.
!2x−1
!2−x
3
3
Câu 126. Tập các số x thỏa mãn


5
5
A. (−∞; 1].
B. [3; +∞).
C. (+∞; −∞).

D. 24.

D. [1; +∞).

Câu 127. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa hai đường thẳng BD và√S C bằng




a 6
a 6
a 6
.
C.
.
D.
.
A. a 6.
B.
3
2
6
Câu 128. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. Vô nghiệm.
C. 2.
D. 3.
2

Câu 129. [2] Tổng các nghiệm của phương trình 3 x −3x+8 = 92x−1 là
A. 7.
B. 6.
C. 5.

D. 8.

Câu 130. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông

cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 5
a3 5
a3 3
A.
.
B.
.
C.
.
D.
.
12
12
4
6
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B


2. A

3.

B

4.

5.

6. A

C

7. A
9.

8.
C

13.
C

17.

D

14.

D


16.

D

18. A

21.

C

22.

B

C

24. A
26.

C

25.
27.

B

28.

29.


B

30.

31.

B

32.

33.

C

34.

35.

C

36.

37.

B

38. A

39.


B

40. A
42.

41. A
43.

D

20.

19. A
23.

C

12. A
D

15.

B

10.

B

11.


B

B

D
B
C
D
B
C

B

44.

C

45.

C

46.

B

47.

C


49.

B

50. A

51.

52. A

53.

B
B

54.

D

55.

56.

D

57. A

58. A

59. A


60.

D

61.

62.

D

63.

64.

D

65. A

66.
68.

D

C
B

67. A

B

D

69.
1

B


70.

D

71.

C
C

72.

B

73.

74.

B

75.

76.


77.

C

78. A

81.

C
D

82.

C
B

92. A

D

89.

D

91.

D

94.


C

95.

96.

C

97.

98.

D
D

102.
C

C

101.

D

103.

D

107. A

C

110.

C

109.
D

111.

112. A

D

113. A

114.

C

115.

116.

C

117.

118. A


119. A

120. A

121.

122. A

123. A

124. A

125. A

126.

D

128.
130.

D

105. A

B

108.


B

99. A

100. A

106.

C

87.

93.

104.

D

85.
D

88.

C

83.

B

86.

90.

C

79. A

80.
84.

B

127.
129. A

C
B

2

D
B
B

D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×