Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (573)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.35 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Khẳng định nào sau đây đúng?
A. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ tứ giác đều là hình lập phương.
C. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng là hình lăng trụ đều.
Câu 2. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5; 2}.
B. {5}.
C. {3}.

D. {2}.

2

Câu 3. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.
B. 2 − log2 3.
C. 3 − log2 3.
Câu 4. Tính lim
A. 0.

7n2 − 2n3 + 1


3n3 + 2n2 + 1
B. 1.

C.

7
.
3

D. 1 − log3 2.

2
D. - .
3

1
. Trong các khẳng định sau đây, khẳng định nào đúng?
xy + 1
0
B. xy = −e + 1.
C. xy0 = −ey − 1.
D. xy0 = ey − 1.

Câu 5. [3-12217d] Cho hàm số y = ln
A. xy0 = ey + 1.

Câu 6. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?

Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
100.(1, 01)3
(1, 01)3
triệu.
B.
m
=
triệu.
A. m =
(1, 01)3 − 1
3
100.1, 03
120.(1, 12)3
C. m =
triệu.
D. m =
triệu.
3
(1, 12)3 − 1
Câu 7. Tính lim
A.

2
.
3

2n2 − 1
3n6 + n4
B. 1.


C. 0.

D. 2.

12 + 22 + · · · + n2
n3
B. 0.

C. +∞.

D.

Câu 8. [3-1133d] Tính lim
A.

1
.
3

2
.
3




x = 1 + 3t





Câu 9. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua




z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương



 trình là








x = 1 + 7t
x = 1 + 3t
x = −1 + 2t
x = −1 + 2t

















.
D. 
A. 
y = −10 + 11t . B. 
y = −10 + 11t . C. 
y=1+t
y = 1 + 4t .

















z = 6 − 5t
z = 1 + 5t
z = 1 − 5t
z = −6 − 5t
Trang 1/11 Mã đề 1


 π π
Câu 10. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 1.
C. 3.
D. 7.
Câu 11. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2
a 2
.
B.
.
C. a 2.

D. a 3.
A.
3
2
Câu 12. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Chỉ có (II) đúng.

C. Cả hai đều sai.

D. Chỉ có (I) đúng.

Câu 13. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1

x y z−1
x y−2 z−3
A. = =
.
B. =
=
.
1 1
1
2
3
−1
x−2 y−2 z−3
x−2 y+2 z−3
=
=
.
D.
=
=
.
C.
2
2
2
2
3
4
Câu 14. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng

1079
1637
23
1728
.
B.
.
C.
.
D.
.
A.
4913
4913
4913
68
Câu 15. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
1
ab
1
A. √
.
B. √
.
C. 2
.
D. √
.

2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 16. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
C. 5.
A. 5.
B. .
5


D. 25.

8
Câu 17. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 64.
B. 81.
C. 82.
D. 96.
Câu 18. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC theo a


a3 15
a3
a3 15

a3 5
.
B.
.
C.
.
D.
.
A.
5
3
25
25
Câu 19. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (0; −2).
B. (1; −3).
C. (2; 2).
D. (−1; −7).
Câu 20. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m ≤ 3.
C. m < 3.
D. m > 3.
Câu 21. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 5 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
Câu 22. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 1).
B. Hàm số nghịch biến trên khoảng (1; +∞).
C. Hàm số đồng biến trên khoảng (1; 2).

D. Hàm số nghịch biến trên khoảng (−∞; 0).
Trang 2/11 Mã đề 1


Câu 23. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
A. lim
= .
B. lim [ f (x) − g(x)] = a − b.
x→+∞ g(x)
x→+∞
b
C. lim [ f (x) + g(x)] = a + b.
D. lim [ f (x)g(x)] = ab.
x→+∞

x→+∞

Câu 24. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
Câu 25. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. 9.
C. Khơng tồn tại.
x+2

Câu 26. Tính lim
bằng?
x→2
x
A. 2.
B. 0.
C. 3.

D. 13.

D. 1.

[ = 60◦ , S O
Câu 27. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ A đến (S
√ BC) bằng

a 57
2a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
17
19

19
3
2
Câu 28. Tìm m để hàm số y = mx + 3x + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −1.
C. m = −3.
D. m = −2.
Câu 29. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. −4.
C. 4.

D. −2.

Câu 30. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m , 0.
B. m < 0.
C. m > 0.

D. m = 0.

Câu 31. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 12 mặt đều.

D. Khối bát diện đều.

C. Khối lập phương.


Câu 32. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
x
9
Câu 33. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. −1.
B. 2.
C. 1.
D. .
2
Câu 34. Khối đa diện đều loại {3; 3} có số cạnh
A. 4.
B. 8.
C. 6.
D. 5.
2
Câu 35. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
A. m = ±3.
B. m = ± 3.
C. m = ± 2.
D. m = ±1.

Câu 36. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8

A. m = ± 2.
B. m = ±1.
C. m = ± 3.
D. m = ±3.
t
9
Câu 37. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 1.
B. 2.
C. 0.
D. Vô số.
Câu 38.
√ min |z − 1 − i|.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
A. 10.
B. 1.
C. 2.
D. 2.
Trang 3/11 Mã đề 1


4x + 1
Câu 39. [1] Tính lim
bằng?
x→−∞ x + 1
A. −4.
B. 4.


C. 2.

D. −1.

Câu 40. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e2 − 2; m = e−2 + 2.
C. M = e−2 + 1; m = 1.
D. M = e−2 + 2; m = 1.
1
Câu 41. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 < m ≤ 3.
B. 0 ≤ m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 0 < m ≤ 1.
Câu 42. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 3.
C. 2.
D. Vô nghiệm.
Câu 43. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. F(x) = G(x) trên khoảng (a; b).
B. Cả ba câu trên đều sai.
C. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.

Câu 44. [1] Biết log6 a = 2 thì log6 a bằng

A. 36.
B. 108.
C. 4.
D. 6.
Câu 45.
! định nào sau đây là sai?
Z Các khẳng
0

A.
Z
C.

f (x)dx = f (x).
Z
k f (x)dx = k
f (x)dx, k là hằng số.

Z
B.
Z
D.

f (x)dx = F(x) + C ⇒

Z

f (t)dt = F(t) + C.

f (x)dx = F(x) +C ⇒


Z

f (u)dx = F(u) +C.

Câu 46. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a3 6
a3 6
a 3
.
B.
.
C.
.
D.
.
A.
24
48
24
8
Câu 47. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1

1
D. .
A. −2.
B. 2.
C. − .
2
2
tan x + m
Câu 48. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. (1; +∞).
C. (−∞; 0] ∪ (1; +∞). D. [0; +∞).
Câu 49. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
B. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =

g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Câu 50. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√

a3
a3
4a3 3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
6
3
3
Trang 4/11 Mã đề 1


Câu 51. Phát biểu nào trong các phát biểu sau là đúng?

A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 52. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 2
a3 3
a3 3
.
B.
.
C.
.
D. 2a2 2.
A.
24
24
12
Câu 53. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp 8 lần.
C. Tăng gấp 4 lần.
D. Tăng gấp đôi.

Câu 54. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Câu 55. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
B. log2 a = − loga 2.
C. log2 a =
.
D. log2 a = loga 2.
A. log2 a =
log2 a
loga 2
Câu 56. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1

A. 0.

B. 5.

C. 7.

D. 9.

Câu 57. Khối đa diện đều loại {3; 4} có số đỉnh
A. 4.
B. 6.


C. 10.

D. 8.

Câu 58. Dãy! số nào có giới hạn bằng 0?
n
6
A. un =
.
B. un = n2 − 4n.
5

n3 − 3n
C. un =
.
n+1

!n
−2
D. un =
.
3

Câu 59. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
A. 12.
B. 27.

C. 18.
D.
2
Câu 60. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối lăng trụ tam giác.
B. Khối bát diện đều.
C. Khối tứ diện.
D. Khối lập phương.
Câu 61. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
Câu 62. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 1.
B. T = 4 + .
C. T = e + .
D. T = e + 3.
e
e

x2 + 3x + 5
Câu 63. Tính giới hạn lim
x→−∞
4x − 1
1
1

A. 1.
B. .
C. 0.
D. − .
4
4
Trang 5/11 Mã đề 1



Câu 64. √Xác định phần ảo của số
phức
z
=
(
2 + 3i)2

A. −6 2.
B. 6 2.
C. −7.

D. 7.

Câu 65. [2] Cho hình hộp chữ nhật ABCD.A B C D có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
ab
1
A. √

.
B. √
.
C. 2
.
D. √
.
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 66. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là

3
3
2a 6
a 3
a3 3
a3 6
A.
.
B.
.
C.
.
D.

.
9
2
4
12
Câu 67. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 3.
C. 4.
D. 2.
0

0

0

0

Câu 68. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 8 mặt.
C. 6 mặt.
Câu 69. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh của khối chóp bằng số mặt của khối chóp.
C. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
√3
4
Câu 70. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng

7
5
5
B. a 3 .
C. a 3 .
A. a 8 .

D. 7 mặt.

2

D. a 3 .
x+3
Câu 71. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. Vô số.
B. 3.
C. 2.
D. 1.

Câu 72. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vô số.
B. 62.
C. 63.
D. 64.
Câu 73. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho

tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 15 tháng.
C. 18 tháng.
D. 17 tháng.
Câu 74. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 1.
B. 0.

C. +∞.

D. 2.

Câu 75. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.

B. Cả hai câu trên đúng. C. Cả hai câu trên sai.



x
+
3
+
6−x
Câu 76.
Tìm
giá
trị
lớn
nhất
của
hàm
số
y
=


A. 3 2.
B. 2 3.
C. 3.

D. Chỉ có (I) đúng.
D. 2 +


3.
Trang 6/11 Mã đề 1



x−2 x−1
x
x+1
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−∞; −3].
C. (−3; +∞).
D. [−3; +∞).
Câu 77. [4-1212d] Cho hai hàm số y =

Câu 78. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 160 cm2 .
C. 1200 cm2 .
D. 120 cm2 .
Câu 79. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích khối chóp S .ABCD là √




a3 3
2a3 3
a3 3
3
.
B. a 3.
.
D.
.
A.
C.
3
6
3
Câu 80. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 27cm3 .
C. 64cm3 .
D. 72cm3 .
Câu 81. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Có hai.
C. Có một hoặc hai.
D. Khơng có.
Câu 82. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.

C. 4 mặt.
D. 3 mặt.
Câu 83. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là −1, phần ảo là −4.
Câu 84. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng




a 3
a 3
2a 3
A. a 3.
B.
.
C.
.
D.
.
3
2
2
x−1 y z+1
Câu 85. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình
= =


2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x − y + 2z − 1 = 0.
B. −x + 6y + 4z + 5 = 0.
C. 10x − 7y + 13z + 3 = 0.
D. 2x + y − z = 0.
Câu 86.
bằng 1 là:
√ Thể tích của khối lăng√trụ tam giác đều có cạnh √
3
3
3
.
B.
.
C.
.
A.
4
2
12
Câu 87. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.

B. 4.


C. 2.

D.
1
3|x−1|

3
.
4

= 3m − 2 có nghiệm duy

D. 1.

Câu 88. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
13
5
23
9
A.
.
B. − .
C. −
.
D.
.
100
16
100

25
Câu 89. Khối đa diện đều loại {3; 3} có số mặt
A. 3.
B. 2.
C. 5.
D. 4.
Trang 7/11 Mã đề 1


Câu 90. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 48cm3 .
B. 84cm3 .
C. 91cm3 .
D. 64cm3 .
n−1
Câu 91. Tính lim 2
n +2
A. 3.
B. 0.
C. 1.
D. 2.
Câu 92. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (0; 2).

C. (−∞; 0) và (2; +∞). D. (−∞; 2).

Câu 93. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.

B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
0
Câu 94. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
√ C đến đường thẳng BB bằng 2, khoảng
0
0
cách từ A đến các đường thẳng BB và CC lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3
. Thể tích khối lăng trụ đã cho bằng
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
3


2 3
A. 1.
B.
.
C. 2.
D. 3.
3
2n + 1
Câu 95. Tính giới hạn lim
3n + 2
1
3
2

A. .
B. 0.
C. .
D. .
2
2
3

Câu 96. Cho
√ số phức z thỏa mãn |z +
√ 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
A. |z| = 17.
B. |z| = 10.
C. |z| = 17.
D. |z| = 10.
[ = 60◦ , S A ⊥ (ABCD).
Câu 97. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng khoảng cách từ A đến cạnh
√ S C là a. Thể tích khối

√chóp S .ABCD là
3
3

a 2
a 3
a3 2
3
A. a 3.
B.

.
C.
.
D.
.
4
6
12
Câu 98. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.
x2 − 5x + 6
x→2
x−2
B. 1.

C. Khối lập phương.

D. Khối tứ diện đều.

C. 0.

D. −1.

C. 20.

D. 8.

Câu 99. Tính giới hạn lim
A. 5.


Câu 100. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 30.

6
Câu 101. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
. Tính
3x + 1
Z 1
f (x)dx.
0

A. 4.

B. −1.

D. 6.
! x3 −3mx2 +m
1
Câu 102. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
nghịch biến trên
π
khoảng (−∞; +∞)
A. m ∈ R.
B. m , 0.
C. m ∈ (0; +∞).
D. m = 0.
Câu 103. [1] Đạo hàm của hàm số y = 2 x là
1

A. y0 =
.
B. y0 = 2 x . ln x.
ln 2

C. 2.

C. y0 =

1
2 x . ln

x

.

D. y0 = 2 x . ln 2.
Trang 8/11 Mã đề 1



Câu 104. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3
a 6
a 6

a3 2
a3 6
A.
.
B.
.
C.
.
D.
.
36
6
6
18
Câu 105. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
C. .
D. 6.
A. 9.
B. .
2
2
q
2
Câu 106. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 =
√ i
h
0 có ít nhất một nghiệm thuộc đoạn 1; 3 3

A. m ∈ [−1; 0].
B. m ∈ [0; 4].
C. m ∈ [0; 2].
D. m ∈ [0; 1].
Câu 107. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. −1.
C. 1.

D. 2.

Câu 108. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 27 lần.
Câu 109. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Trục ảo.
C. Trục thực.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.
[ = 60◦ , S O
Câu 110. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S BC) bằng


a 57

a 57
2a 57
A.
.
B.
.
C. a 57.
D.
.
17
19
19
Câu 111. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc 45◦ và AB = 3a, BC = 4a.
√ Thể tích khối chóp S .ABCD là
3
10a 3
A. 40a3 .
B.
.
C. 20a3 .
D. 10a3 .
3
Câu 112. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 13.
B. 2020.
C. log2 2020.
D. log2 13.
π
Câu 113. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá

3

trị của biểu √
thức T = a + b 3.

A. T = 3 3 + 1.
B. T = 2.
C. T = 4.
D. T = 2 3.
Câu 114. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Ba mặt.
B. Bốn mặt.
C. Năm mặt.

D. Hai mặt.

Câu 115.
√ Thể tích của tứ diện đều
√cạnh bằng a


3
3
a 2
a 2
a3 2
a3 2
A.
.
B.

.
C.
.
D.
.
2
4
6
12
Câu 116. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD


√ là
3
3
3
3
8a 3
a 3
4a 3
8a 3
A.
.
B.
.
C.
.

D.
.
9
9
9
3
Trang 9/11 Mã đề 1


1 − n2
Câu 117. [1] Tính lim 2
bằng?
2n + 1
1
1
1
A. − .
B. .
C. .
D. 0.
2
3
2
Câu 118. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Có một.
C. Có hai.
D. Khơng có.
Câu 119. Trong khơng gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),

C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; 3).
B. A0 (−3; 3; 3).
C. A0 (−3; −3; −3).
D. A0 (−3; 3; 1).
Câu 120. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = 0.
B. x = −8.
C. x = −2.

D. x = −5.

Câu 121. Hàm số nào sau đây khơng có cực trị
1
x−2
A. y =
.
B. y = x4 − 2x + 1.
C. y = x + .
D. y = x3 − 3x.
2x + 1
x
Câu 122. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 27 m.
C. 1587 m.

D. 387 m.
Câu 123. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a
a
a 3
.
B. .
C. .
D. a.
A.
2
3
2
Câu 124. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Nhị thập diện đều. B. Thập nhị diện đều. C. Bát diện đều.
D. Tứ diện đều.
Câu 125. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A.
.
B. 7.
C. 5.
D. .
2
2
Câu 126. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 2 nghiệm.
B. 3 nghiệm.

C. Vô nghiệm.
D. 1 nghiệm.
Câu 127. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e + 1.
B. .
C. 3.
e

D. 2e.


Câu 128. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của √
khối chóp S .ABCD là

3

a 3
a3 3
a3
3
A.
.
B. a 3.
C.
.
D.
.
3

12
4

Câu 129. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 3
πa3 3
πa3 6
A. V =
.
B. V =
.
C. V =
.
D. V =
.
2
6
3
6
Câu 130. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ Thể tích khối chóp S 3.ABC
√ là


3
a 3
a 3
a3 3
a3 2
.
B.
.
C.
.
D.
.
A.
12
6
4
12
- - - - - - - - - - HẾT- - - - - - - - - Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
3.

C

2.

4.

B

5.

D

D

6. A

C

7.

B

8. A

9.

B

10.

B

11.


B

12.

B

13. A

14.

15. A

16.

17.

22. A

B

24.

25. A

26. A
D

32.

33.


C

35.

D

38.

39.

B

40. A

41. A
C

45.

D

C

44.

C

46.


C

48.

49. A

50.

51. A

52.
B

B

42.

47. A

55.

C

36. A

B

43.

D


34.

37.

B
C
B

54. A
C

B

56.

D

58.

D

59.

C

60.

61.


C

62.

63.

D

64.
66.

65. A
67.

D

30. A

31. A

57.

D

28.

B

29.


53.

C

20. A

23. A
27.

D

18.

B

19. A
21.

C

68. A

C
1

C
D
B
D



69.
71.

70.

D
B

73. A

72.

B

74.

B

75.

B

76. A

77.

B

78. A


79.

D

80.

81.

C

82.

83.

C

84.

85.

C

86. A

87.

D

88.


89.

D

90.

91.

B

93. A
D

95.
97.

D

99.
101. A

D

103.
C

105.

D

B
C
D
C

94.

C
B

98.

C

100.

C

102.

D

104.

D

106. A
D

108.


107. A
109.

D

110.

111.

C

112.

113.

C

114. A

115.

D

B
D

116. A

117. A

119.

B

92.
96.

B

D

118.
B

121. A

120.

B

122.

B
B

123.

D

124.


125.

D

126. A

127.

C

128. A

129.

C

130. A

2

C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×