Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (946)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.15 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
xy + 1
0
B. xy = −e − 1.
C. xy0 = ey − 1.
D. xy0 = −ey + 1.

Câu 1. [3-12217d] Cho hàm số y = ln
A. xy0 = ey + 1.

Câu 2. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 50, 7 triệu đồng.
C. 70, 128 triệu đồng. D. 3, 5 triệu đồng.
Câu 3. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 − 2
A. un =
.
B. un =
.


2
5n − 3n
5n + n2

n2 − 3n
n2 + n + 1
.
D.
u
=
.
n
n2
(n + 1)2



x=t




Câu 4. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : 
y = −1 và hai mặt phẳng (P), (Q)




z = −t
lần lượt có phương trình x + 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0. Viết phương trình mặt cầu (S ) có tâm I

thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q).
9
9
A. (x − 3)2 + (y − 1)2 + (z − 3)2 = .
B. (x + 3)2 + (y + 1)2 + (z + 3)2 = .
4
4
9
9
2
2
2
2
2
2
C. (x − 3) + (y + 1) + (z + 3) = .
D. (x + 3) + (y + 1) + (z − 3) = .
4
4
C. un =

Câu 5. Cho
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2 − 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 17.
C. |z| = 10.


Câu 6. [12215d] Tìm m để phương trình 4 x+
3

A. 0 < m ≤ .
B. m ≥ 0.
4

1−x2



D. |z| =


17.

− 3m + 4 = 0 có nghiệm
9
3
C. 0 ≤ m ≤ .
D. 0 ≤ m ≤ .
4
4

− 4.2 x+

1−x2

Câu 7. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 3.
B. −3.
C. −6.
D. 0.

Câu 8. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 2.
B. 5.
C. 3.

D. 1.

Câu 9. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó là:
A. 64cm3 .
B. 27cm3 .
C. 46cm3 .
D. 72cm3 .
Câu 10. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = (0; +∞).

C. D = R \ {1}.
D. D = R \ {0}.



x = 1 + 3t




Câu 11. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua





z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x = −1 + 2t
x = 1 + 3t
x = −1 + 2t
x = 1 + 7t

















A. 
C. 
.
y = −10 + 11t . B. 
y = 1 + 4t .
y = −10 + 11t . D. 
y=1+t

















z = 6 − 5t
z = 1 − 5t
z = −6 − 5t
z = 1 + 5t
Trang 1/10 Mã đề 1


Câu 12. Khối đa diện đều loại {5; 3} có số đỉnh
A. 20.
B. 30.

C. 12.

D. 8.

Câu 13. Dãy số nào có giới hạn bằng 0?
n3 − 3n
A. un = n2 − 4n.
B. un =
.
n+1

!n
−2
C. un =
.
3

!n
6

D. un =
.
5

Câu 14. Tứ diện đều thuộc loại
A. {3; 4}.
B. {5; 3}.

C. {3; 3}.

D. {4; 3}.

Câu 15. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 16. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối 20 mặt đều.

C. Khối bát diện đều.

D. Khối 12 mặt đều.

Câu 17. Tính diện tích hình phẳng giới hạn bởi các đường y = xe x , y = 0, x = 1.
1
3
A. .
B. 1.

C. .
D.
2
2
Câu 18. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (0; 2).
C. (−∞; 1).
D.
5
Câu 19. Tính lim
n+3
A. 1.
B. 2.
C. 3.
D.


3
.
2
R.
0.

π
Câu 20. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.



A. T = 2.
B. T = 4.
C. T = 2 3.
D. T = 3 3 + 1.

Câu 21. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. Vô nghiệm.
C. 1.
D. 3.
Z 2
ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
Câu 22. Cho
x2
1
A. 1.
B. 3.
C. −3.
D. 0.
Câu 23. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
A. a 2.

B.
.
C.
.
D. 2a 2.
2
4
Câu 24. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 12 năm.
C. 14 năm.
D. 10 năm.
Câu 25. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; +∞).
B. (−∞; 0) và (2; +∞). C. (0; 2).
2−n
Câu 26. Giá trị của giới hạn lim
bằng
n+1
A. 2.
B. −1.
C. 0.


4n2 + 1 − n + 2
Câu 27. Tính lim
bằng

2n − 3
3
A. 2.
B. .
C. +∞.
2

D. (−∞; 2).

D. 1.

D. 1.
Trang 2/10 Mã đề 1


Câu 28. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. −2 + 2 ln 2.
C. 4 − 2 ln 2.

D. e.

Câu 29. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {5}.
C. {5; 2}.
D. {2}.
Câu 30. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối


√ chóp S .ABCD là

3
3
a 3
a3 6
a3 3
a 2
.
B.
.
C.
.
D.
.
A.
16
24
48
48
Z 1
6
2
3
Câu 31. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. 2.


B. 6.

C. 4.

D. −1.

Câu 32. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 5.
C. V = 4.
D. V = 6.
Câu 33. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim+ f (x) = lim− f (x) = +∞.
x→a
x→a
C. lim+ f (x) = lim− f (x) = a.
D. lim f (x) = f (a).
x→a

x→a

x→a

Câu 34. Tính mơ đun của số phức z√biết (1 + 2i)z2 = 3 + 4i. √
4
C. |z| = 5.
A. |z| = 5.

B. |z| = 5.
Câu 35. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m , 0.
C. m > 0.
2
1−n
Câu 36. [1] Tính lim 2
bằng?
2n + 1
1
1
C. − .
A. 0.
B. .
2
2
2x + 1
Câu 37. Tính giới hạn lim
x→+∞ x + 1
1
A. 2.
B. 1.
C. .
2
Câu 38. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. 1.

B. 0.


C. +∞.


D. |z| = 2 5.
D. m = 0.

D.

1
.
3

D. −1.
un
bằng
vn
D. −∞.

Câu 39. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = −2.
C. x = −5.
D. x = 0.
x−3 x−2 x−1
x
Câu 40. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham

x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (−∞; 2].
C. (2; +∞).
D. (−∞; 2).
d = 30◦ , biết S BC là tam giác đều
Câu 41. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
9
13
16

26
x−2
Câu 42. Tính lim
x→+∞ x + 3
2
A. −3.
B. − .
C. 2.
D. 1.
3
Trang 3/10 Mã đề 1


Câu 43. [1-c] Giá trị của biểu thức
A. 2.

log7 16
log7 15 − log7

B. −4.

15
30

bằng
C. 4.

D. −2.

Câu 44. Cho z là√nghiệm của phương trình x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z

−1 + i 3
−1 − i 3
.
B. P = 2i.
C. P =
.
D. P = 2.
A. P =
2
2
x+2
Câu 45. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. Vô số.
B. 1.
C. 3.
D. 2.
Câu 46. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên

A. Cả hai câu trên đúng. B. Chỉ có (I) đúng.
4x + 1
bằng?
x→−∞ x + 1
B. −1.

C. Cả hai câu trên sai.

D. Chỉ có (II) đúng.

C. 2.

D. 4.

Câu 47. [1] Tính lim
A. −4.

Câu 48. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; 2).
C. Hàm số nghịch biến trên khoảng (−∞; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).
Câu 49. Tìm giới hạn lim
A. 3.
Câu 50. Tính lim
A. 0.

2n + 1
n+1
B. 0.


7n2 − 2n3 + 1
3n3 + 2n2 + 1
B. 1.

C. 1.

D. 2.

2
C. - .
3

D.

7
.
3

Câu 51. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
10a 3
A. 10a3 .
B. 20a3 .
C.
.
D. 40a3 .
3

Câu 52. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
B. Hai hình chóp tam giác.
C. Hai hình chóp tứ giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
Câu 53. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a 3
a
a
A. a.
B.
.
C. .
D. .
2
2
3
Trang 4/10 Mã đề 1


Câu 54. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2
3

phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
.
A. 1.
B. 2.
C. 3.
D.
3
Câu 55. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a 3
a3 6
a3 6
A.
.
B.
.
C.
.
D.

.
24
24
8
48
2

Câu 56. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
2
1
1
A. 3 .
B.
.
C.
√ .
e
2e3
2 e

D.

1
.
e2

Câu 57. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. [1; 2].
C. (1; 2).


D. (−∞; +∞).

Câu 58. Tìm m để hàm số y = x4 − 2(m + 1)x2 − 3 có 3 cực trị
A. m > 1.
B. m ≥ 0.
C. m > 0.

D. m > −1.

x2

Câu 59. [2] Tổng các nghiệm của phương trình 3 .2
A. 1 − log3 2.
B. 1 − log2 3.
C.
log 2x

Câu 60. [3-1229d] Đạo hàm của hàm số y =
x2
1 − 4 ln 2x
1 − 2 ln 2x
.
B. y0 =
.
C.
A. y0 = 3
x ln 10
2x3 ln 10
Câu 61. Giá trị của lim (3x2 − 2x + 1)

x→1
A. 2.
B. 3.
C.
x−1

= 8.4 là
3 − log2 3.
x−2

y0 =

2x3

1
.
ln 10

1.

D. 2 − log2 3.

D. y0 =

1 − 2 log 2x
.
x3

D. +∞.


Câu 62. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối lập phương.
C. Khối lăng trụ tam giác.
D. Khối bát diện đều.
x2 − 9
Câu 63. Tính lim
x→3 x − 3
A. +∞.
B. 6.
Câu 64. Phần thực và √
phần ảo của số phức
√ z=
A. Phần thực là 1√− 2, phần ảo là − √3.
C. Phần thực là 2 − 1, phần ảo là − 3.



C. 3.
D. −3.

2 − 1 − 3i lần lượt √l

B. Phần thực là √2, phần ảo là 1 − √3.
D. Phần thực là 2 − 1, phần ảo là 3.

Câu 65. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1

A. .
B. 4.
C. .
D. .
8
2
4
Câu 66. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một môn nằm cạnh nhau là
2
1
1
9
A. .
B. .
C.
.
D.
.
5
5
10
10
Câu 67. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n2 lần.
B. n3 lần.
C. 2n3 lần.
D. n3 lần.
mx − 4

Câu 68. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 34.
C. 26.
D. 45.
Trang 5/10 Mã đề 1


Câu 69. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng
nhau?
A. 8.
B. 6.
C. 4.
D. 3.
Câu 70. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 0.
C. 22016 .
D. 1.
Câu 71. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −15.
C. −9.
D. −5.
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét

Câu 72. [3-1214d] Cho hàm số y =
x+2
tam giác
AB có độ dài bằng

√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng √
A. 2 3.
B. 2.
C. 6.
D. 2 2.
Câu 73.√Thể tích của tứ diện đều √
cạnh bằng a


3
3
a 2
a 2
a3 2
a3 2
A.
.
B.
.
C.
.
D.
.
2
4

6
12
Câu 74. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức
trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém môn Toán nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm môn Tốn là
10
40
20
20
C50
C50
C50
.(3)40
.(3)10
.(3)30
C50
.(3)20
.
B.
.
C.
.
D.
.
A.
450
450
450
450

x−3
Câu 75. [1] Tính lim
bằng?
x→3 x + 3
A. 1.
B. 0.
C. −∞.
D. +∞.
1

Câu 76. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R \ {1}.
B. D = (1; +∞).
C. D = (−∞; 1).

D. D = R.

Câu 77. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0) lần
lượt là hình chiếu
của B, C lên các cạnh! AC, AB. Tọa độ hình chiếu của A lên BC là
!
!
8
7
5
A.
; 0; 0 .
B.
; 0; 0 .
C. (2; 0; 0).

D.
; 0; 0 .
3
3
3
Câu 78. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
5
13
9
23
.
B. − .
C.
.
D.
.
A. −
100
16
100
25
Câu 79. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 3.
B. T = 4 + .
C. T = e + .
D. T = e + 1.

e
e
tan x + m
Câu 80. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
 π
0; .
4
A. (1; +∞).
B. [0; +∞).
C. (−∞; −1) ∪ (1; +∞). D. (−∞; 0] ∪ (1; +∞).
Câu 81. Khối đa diện đều loại {3; 3} có số cạnh
A. 6.
B. 5.

C. 8.

D. 4.
1 3
Câu 82. Tìm tất cả các khoảng đồng biến của hàm số y = x − 2x2 + 3x − 1.
3
A. (−∞; 3).
B. (1; 3).
C. (−∞; 1) và (3; +∞). D. (1; +∞).
Trang 6/10 Mã đề 1


ln x p 2
1

Câu 83. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
8
1
A. .
B. .
C. .
D. .
3
3
9
9
Câu 84.
Z Các khẳng định nào sau
Z đây là sai?
Z
Z
A.
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. B.
k f (x)dx = k
f (x)dx, k là hằng số.
!
Z
Z
Z

0
f (x)dx = f (x).
C.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. D.
Câu 85. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A.
.
B.
.
C. a3 .
D.
.
24
6
12
Câu 86. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 3 nghiệm.
B. Vô nghiệm.
C. 2 nghiệm.
D. 1 nghiệm.
Câu 87. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên n lần.
B. Tăng lên (n − 1) lần. C. Giảm đi n lần.

D. Không thay đổi.
Câu 88. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 4.
B. ln 10.
C. ln 14.
D. ln 12.
Câu 89. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3 3
a3 3
a3 3
a3
.
B.
.
C.
.
D.
.
A.
4
8
12
4
1
bằng
Câu 90. [1] Giá trị của biểu thức log √3
10
1

1
A. − .
B. .
C. −3.
D. 3.
3
3
Câu 91. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một.
B. Khơng có.
C. Có hai.
D. Có một hoặc hai.
x+3
Câu 92. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 1.
B. Vô số.
C. 3.
D. 2.
Câu 93. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = loga 2.
B. log2 a = − loga 2.
C. log2 a =
.
D. log2 a =

.
loga 2
log2 a
n−1
Câu 94. Tính lim 2
n +2
A. 0.
B. 2.
C. 3.
D. 1.
Câu 95. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 20.
B. 15, 36.
C. 24.
D. 3, 55.
Câu 96. [4-1245d] Trong tất cả√các số phức z thỏa mãn hệ
√ thức |z − 1 + 3i| = 3. Tìm min |z − 1 − i|.
A. 2.
B. 2.
C. 10.
D. 1.
Trang 7/10 Mã đề 1


Câu 97. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Hai khối chóp tam giác.

D. Hai khối chóp tứ giác.
Câu 98. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 2.
B. 0.
C. 3.

D. 1.

Câu 99. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 5.
B. 34.
C.
.
D. 68.
17
Câu 100. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b

C. lim− f (x) = f (a) và lim− f (x) = f (b).


x→a

x→b

D. lim+ f (x) = f (a) và lim+ f (x) = f (b).
x→a
x→a
x→b
x→b

3
4
Câu 101. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
7
5
2
5
A. a 3 .
B. a 3 .
C. a 3 .
D. a 8 .

Câu 102. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. m ≥ 0.
C. m > − .
D. m ≤ 0.

A. − < m < 0.
4
4
Câu 103. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?

A. y = log √2 x.
B. y = loga x trong đó a = 3 − 2.
D. y = log 14 x.
C. y = log π4 x.
!
x+1
Câu 104. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2017
2016
4035
.
B.
.
C.
.
D. 2017.
A.
2018
2018
2017
Câu 105. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1

1
1
A. m ≥ .
B. m < .
C. m ≤ .
D. m > .
4
4
4
4
Câu 106. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.
C. Khối bát diện đều. D. Khối 12 mặt đều.
x−1 y z+1
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. −x + 6y + 4z + 5 = 0.
B. 10x − 7y + 13z + 3 = 0.
C. 2x + y − z = 0.
D. 2x − y + 2z − 1 = 0.
Câu 107. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

9t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao

9t + m2
cho f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. 1.
C. Vô số.
D. 2.
Câu 108. [4] Xét hàm số f (t) =

Câu 109. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; 0) và (1; +∞). B. (−1; 0).
C. (−∞; −1) và (0; +∞). D. (0; 1).
Trang 8/10 Mã đề 1


Câu 110. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0 B0C 0 D0 , biết tạo độ A(−3; 2; −1),
C(4; 2; 0), B0 (−2; 1; 1), D0 (3; 5; 4). Tìm tọa độ đỉnh A0 .
A. A0 (−3; −3; −3).
B. A0 (−3; −3; 3).
C. A0 (−3; 3; 3).
D. A0 (−3; 3; 1).
Câu 111. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
.
C. 2a 6.
B.

D. a 3.
A. a 6.
2
log 2x
Câu 112. [1229d] Đạo hàm của hàm số y =

x2
1
1 − 4 ln 2x
1 − 2 ln 2x
1 − 2 log 2x
A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.
D. y0 =
.
3
2x ln 10
2x ln 10
x ln 10
x3
Câu 113. Thể tích của khối lăng
√ trụ tam giác đều có cạnh√bằng 1 là:

3
3
3

3
A. .
B.
.
C.
.
D.
.
4
4
2
12
Câu 114. Khối đa diện đều loại {3; 4} có số cạnh
A. 6.
B. 10.
C. 8.
D. 12.
1 − 2n
bằng?
Câu 115. [1] Tính lim
3n + 1
1
2
2
A. .
B. 1.
C. .
D. − .
3
3

3
0 0 0
Câu 116. Cho lăng trụ đều ABC.A B C có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B

√ C là
3
a3
a3 3
a 3
3
.
B. a .
C.
.
D.
.
A.
2
3
6
Câu 117. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm
0
A đến đường



√ thẳng BD bằng
a b2 + c2

b a2 + c2
abc b2 + c2
c a2 + b2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 118. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính
√ thể tích của khối chóp 3S .ABC theo a


3
a 15
a
a3 5
a3 15
A.
.
B.
.
C.

.
D.
.
5
3
25
25
Câu 119.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
0dx = C, C là hằng số.

A.

xα+1
+ C, C là hằng số.
α+1
Câu 120. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 4.
Z

C.

xα dx =

dx = x + C, C là hằng số.

B.
Z

D.

1
dx = ln |x| + C, C là hằng số.
x

C. 2.

Câu 121. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 8 mặt.
C. 6 mặt.
!
1
1
1
Câu 122. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. .
B. 0.
C. 2.
2
Câu 123.
!n Dãy số nào sau đây có giới
!n hạn là 0?
!n

4
5
5
A.
.
B. − .
C.
.
e
3
3

D. 5.
D. 10 mặt.

D. 1.
!n
1
D.
.
3
Trang 9/10 Mã đề 1


Câu 124. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 7 mặt.

D. 8 mặt.


Câu 125. Khối đa diện đều loại {5; 3} có số mặt
A. 20.
B. 30.

D. 12.

C. 8.

Câu 126. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 48cm3 .
B. 91cm3 .
C. 64cm3 .
D. 84cm3 .
Câu 127. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác S AB đều và nằm trong mặt
Thể tích khối chóp

√ S .ABCD là
√ phẳng vng góc với 3(ABCD).
3
3

a 2
a 3
a 3
.
C.
.

D.
.
A. a3 3.
B.
4
2
2
Câu 128. Khối đa diện đều loại {3; 3} có số mặt
A. 4.
B. 2.
C. 5.
D. 3.
x+1
Câu 129. Tính lim
bằng
x→+∞ 4x + 3
1
1
D. .
A. 1.
B. 3.
C. .
4
3
Câu 130. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 24.
C. 21.

D. 23.
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
3.

C

2. A

B

4.

C
D

6.

5. A
7.

B


8. A

9.

B

10. A

11. A

12. A

13.

14.

C

C

15.

B

16.

B

17.


B

18.

B

20.

B

19.

D

21. A

22.

23.

B

24. A

25.

B

26.


27.
29.

D
B

31.
35.

B

28.

D

30.

D

32.

C

33.

C

D

34.


B

C
B

36.

37. A

38.

39. A

40. A

C
B

41.

B

42.

D

43.

B


44.

D

45.

D

46. A

47.

D

48.

49.

D

50.

51.

B
C

52.


B

53. A

54.

B

55. A

56.

D
D

B

57.

D

58.

59.

D

60. A

61. A

63.

62. A
B

65.
67.

64.
D

C

66.

B

68.
1

D
B


69.

D

70.
72. A


71. A
D

73.
75.

74. A

B

76.

77. A

78. A

79. A

80. A

81. A

82.
C

83.
85.

C

B
D

86.

C

88.

C
C

92.

C

94. A

95.

B

96.

97.

B

98.


99.

C

100. A

101.

C

102.

103. A

104.
C

105.

C

90. A

91.
93.

B

84. A
D


87.
89.

B

D
B
C
B

106. A

107.

B

108.

109.

B

110.

C

112.

C


111. A
113.

114.

B

115.
117.

D

D

116. A
118.

B

119.

C

120.

121.

C


122.

123.

D

124. A

125.

D

126.

127.

D

128. A

129.

D

130. A

C

2


D
B
D
C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×