Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thpt (830)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (151.88 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

Câu 1. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 20.

C. 12.

Câu 5. Khối chóp ngũ giác có số cạnh là
A. 10 cạnh.
B. 9 cạnh.

C. 12 cạnh.

D. 30.
!
3n + 2
2
Câu 2. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử của
n+2
S bằng
A. 2.
B. 3.


C. 4.
D. 5.
cos n + sin n
Câu 3. Tính lim
n2 + 1
A. 0.
B. +∞.
C. −∞.
D. 1.


Câu 4. Phần thực và phần
√ ảo của số phức
√ z = 2 − 1 − 3i lần lượt l√

B. Phần thực là √2 − 1, phần ảo là −√ 3.
A. Phần thực là 1√− 2, phần ảo là −√ 3.
C. Phần thực là 2 − 1, phần ảo là 3.
D. Phần thực là 2, phần ảo là 1 − 3.

Câu 6. [2-c] Cho hàm số f (x) =
A.

1
.
2

D. 11 cạnh.

x


9
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9x + 3

B. 1.

C. −1.

D. 2.

Câu 7. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a 6
a3 6
a3 3
A.
.
B.
.
C.
.
D.
.

8
48
24
24
Câu 8. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Câu 9.√ Thể tích của khối lăng trụ
√ tam giác đều có cạnh bằng
√ 1 là:
3
3
3
A.
.
B.
.
C.
.
12
4
2
Câu 10. Phát biểu nào sau đây là sai?
1
A. lim = 0.
n
1
C. lim k = 0.

n

D.

3
.
4

B. lim qn = 0 (|q| > 1).
D. lim un = c (un = c là hằng số).

Câu 11. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 212 triệu.
B. 210 triệu.
C. 216 triệu.
D. 220 triệu.
Trang 1/10 Mã đề 1


Câu 12. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
B. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
dx = log |u(x)| + C.

C.
u(x)
D. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
Câu 13. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 8.
C. 6.
D. 4.
mx − 4
Câu 14. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 67.
B. 34.
C. 45.
D. 26.
2

Câu 15. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
2
1
1
B. 3 .
C. 3 .
A. 2 .
e
e
2e

D.


1
√ .
2 e

Câu 16. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
f (x)dx = f (x).
C.
D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
Câu 17. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).

B. Cả ba mệnh đề.

C. (I) và (II).

D. (I) và (III).


Câu 18. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 2.
B. 0, 4.
C. 0, 5.
D. 0, 3.
Câu 19. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= 0.
B. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
vn
!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
D. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
Câu 20. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD
√ = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
A.
.
B.
.
C. 2a 2.
D. a 2.
4
2
Trang 2/10 Mã đề 1


!2x−1
!2−x
3
3
Câu 21. Tập các số x thỏa mãn


5
5
A. [3; +∞).
B. (−∞; 1].
C. [1; +∞).

D. (+∞; −∞).

Câu 22. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là√

2a3 3
a3
4a3 3
a3
A.
.
B.
.
C.
.
D.
.
3
6
3
3
Câu 23. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = ln 10.

B. f 0 (0) = 10.

C. f 0 (0) =

1
.
ln 10

D. f 0 (0) = 1.

x−1 y z+1

= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x + y − z = 0.
B. −x + 6y + 4z + 5 = 0.
C. 2x − y + 2z − 1 = 0.
D. 10x − 7y + 13z + 3 = 0.

Câu 24. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình

Câu 25. Khối đa diện đều loại {3; 4} có số mặt
A. 8.
B. 12.

D. 10.



x = 1 + 3t




Câu 26. [1232h] Trong không gian Oxyz, cho đường thẳng d : 
y = 1 + 4t . Gọi ∆ là đường thẳng đi qua





z = 1
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2). Đường phân giác của góc nhọn tạo bởi d và ∆ có
phương
 trình là











x
=
−1
+
2t
x
=
1
+
3t
x
=

1
+
7t
x = −1 + 2t
















A. 
C. 
.
D. 
y = −10 + 11t . B. 
y = 1 + 4t .
y=1+t
y = −10 + 11t .

















z = 6 − 5t
z = 1 − 5t
z = 1 + 5t
z = −6 − 5t


4n2 + 1 − n + 2
Câu 27. Tính lim
bằng
2n − 3
3
A. 2.
B. 1.
C. .
D. +∞.
2

Câu 28. [2] Tổng các nghiệm của phương trình 6.4 x − 13.6 x + 6.9 x = 0 là
A. 1.
B. 3.
C. 2.
D. 0.
Câu 29. [1] Đạo hàm của làm số y = log x là
1
ln 10
A. y0 =
.
B.
.
x
10 ln x
x3 − 1
Câu 30. Tính lim
x→1 x − 1
A. 3.
B. 0.
Câu 31. Khối lập phương thuộc loại
A. {4; 3}.
B. {5; 3}.

C. 6.

1
C. y0 = .
x

D. y0 =


1
.
x ln 10

C. +∞.

D. −∞.

C. {3; 3}.

D. {3; 4}.

Câu 32. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (0; 1).
C. (−∞; −1) và (0; +∞). D. (−∞; 0) và (1; +∞).
Câu 33. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
A. − .
B. 2.
C. −2.
2

D.

1
.
2
Trang 3/10 Mã đề 1



Câu 34. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 2.

C. +∞.

B. 3.

D. 1.

Câu 35. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 20, 128 triệu đồng. C. 3, 5 triệu đồng.
D. 50, 7 triệu đồng.
x+1
bằng
x→−∞ 6x − 2
1
B. .
6

Câu 36. Tính lim
A.

1
.

3

C. 1.

D.

1
.
2

Câu 37. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. Cả ba đáp án trên.
Câu 38. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3. Tính
f (2) + f (4)?
A. 4.
B. 11.
C. 10.
D. 12.
Câu 39. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
Câu 40. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 27cm3 .

B. 46cm3 .
C. 64cm3 .
D. 72cm3 .


Câu 41. [12215d] Tìm m để phương trình 4 x+
3
9
A. 0 ≤ m ≤ .
B. 0 ≤ m ≤ .
4
4

1−x2



− 4.2 x+

1−x2

C. m ≥ 0.

− 3m + 4 = 0 có nghiệm

3
D. 0 < m ≤ .
4

Câu 42. [3-1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực

x≥1
A. m > 3.
B. m ≤ 3.
C. m ≥ 3.
D. m < 3.
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
Câu 43. [3-1214d] Cho hàm số y =
x+2
tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng √
AB có độ dài bằng

A. 2.
B. 2 3.
C. 6.
D. 2 2.
1
Câu 44. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 2.
B. 3.
C. 4.
D. 1.
3a
Câu 45. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)

bằng √
a 2
a
2a
a
A.
.
B. .
C.
.
D. .
3
3
3
4
Trang 4/10 Mã đề 1


Câu 46. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
B. k = .
C. k = .
D. k = .
A. k = .
18

15
6
9
p
ln x
1
Câu 47. Gọi F(x) là một nguyên hàm của hàm y =
ln2 x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
8
1
8
A. .
B. .
C. .
D. .
9
9
3
3
Câu 48. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −1.
C. m = −3.

D. m = −2.

Câu 49. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với


đáy (ABC)
√tích khối chóp S .ABC là3 √
√ một góc bằng 60 . Thể
3
3
a 3
a 3
a3
a 3
.
B.
.
C.
.
D.
.
A.
4
8
12
4
Câu 50. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. 1.
C. e2016 .
D. 22016 .
Câu 51. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1


A. 0.

B. 7.

C. 5.



D. 9.

Câu 52. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 64.
C. 62.
D. 63.
Câu 53. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 3 mặt.

D. 4 mặt.

Câu 54. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −15.
B. −5.
C. −9.
D. −12.

Câu 55. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (−∞; 1).
C. R.

D. (2; +∞).

Câu 56. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n3 lần.
B. 2n2 lần.
C. n3 lần.
D. n3 lần.

Câu 57. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vơ số.
B. 63.
C. 62.
D. 64.
Câu 58. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD
√ là
3
10a
3
A. 10a3 .
B. 20a3 .
C.
.

D. 40a3 .
3
Câu 59. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. Không tồn tại.
C. 0.
D. 9.
!x
1
Câu 60. [2] Tổng các nghiệm của phương trình 31−x = 2 +

9
A. − log2 3.
B. − log3 2.
C. log2 3.
D. 1 − log2 3.
Trang 5/10 Mã đề 1


Câu 61. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (0; 2).
B. Hàm số đồng biến trên khoảng (0; +∞).
C. Hàm số đồng biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
1 − 2n
bằng?
Câu 62. [1] Tính lim
3n + 1
1
2

2
C. .
D. − .
A. 1.
B. .
3
3
3
1 + 2 + ··· + n
Câu 63. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
A. lim un = 0.
B. lim un = 1.
1
C. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = .
2
log(mx)
Câu 64. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m ≤ 0.
C. m < 0.
D. m < 0 ∨ m > 4.
Câu 65. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 1.
C. 3.


D. 2.

Câu 66. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 5 mặt.
C. 3 mặt.

D. 4 mặt.

0

0

0

0

0
Câu 67.√ [2] Cho hình lâp phương
√ bằng
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
a 3
a 6
a 6
a 6
.
B.
.
C.

.
D.
.
A.
7
2
2
3
d = 30◦ , biết S BC là tam giác đều
Câu 68. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
26
16
9
13

Câu 69. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài. Tính xác suất để hai
quyển sách cùng một mơn nằm cạnh nhau là
2
1
1
9
.
B. .
C.
.
D. .
A.
10
5
10
5
 π π
3
Câu 70. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 3.
C. 1.
D. 7.

Câu 71. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 12.

C. 6.

D. 10.

Câu 72. Thể tích của khối lập phương có cạnh bằng a 2 √


2a3 2
.
D. 2a3 2.
A. V = 2a3 .
B. V = a3 2.
C.
3
Câu 73. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 68.
B.
.
C. 34.
D. 5.
17
Câu 74. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. Không tồn tại.
B. −3.
C. −5.
D. −7.

x−2 x−1
x
x+1
Câu 75. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−3; +∞).
B. (−∞; −3].
C. (−∞; −3).
D. [−3; +∞).
Trang 6/10 Mã đề 1


Z
Câu 76. Cho
A. 3.

1

2

ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b

x2
B. 1.
C. −3.

D. 0.

8
Câu 77. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 64.
B. 96.
C. 81.
D. 82.
Câu 78. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số đồng biến trên khoảng (1; 2).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng (−∞; 0).
Câu 79. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 91cm3 .
B. 84cm3 .
C. 64cm3 .
D. 48cm3 .

Câu 80. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √


a3 3

a3 3
a3
3
A. a 3.
B.
.
C.
.
D.
.
3
12
4
Câu 81. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
.
B. 5.
C. .
D. 7.
A.
2
2
Câu 82.
đề nào sau đây sai?
Z [1233d-2] Mệnh
Z
k f (x)dx = k

A.

Z
B.

f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
C.

Câu 83. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 1.
C. Vô nghiệm.
D. 2.
Câu 84. [4-1214h] Cho khối lăng trụ ABC.A0 B0C 0 , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng

cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt

2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3


2 3
A. 1.
B.
.
C. 3.
D. 2.
3
Câu 85. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Giảm đi n lần.
B. Tăng lên n lần.
C. Tăng lên (n − 1) lần. D. Không thay đổi.
Câu 86. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(4; 8).
C. A(−4; 8).
D. A(−4; −8)(.
Câu 87. Phát biểu nào sau đây là sai?
A. lim qn = 1 với |q| > 1.
1
C. lim √ = 0.
n
n−1
Câu 88. Tính lim 2

n +2
A. 0.
B. 1.

B. lim un = c (Với un = c là hằng số).
1
D. lim k = 0 với k > 1.
n

C. 2.

D. 3.
Trang 7/10 Mã đề 1


Câu 89.! Dãy số nào sau đây có giới
!n hạn là 0?
n
1
5
A.
.
B.
.
3
3

!n
5
C. − .

3

!n
4
D.
.
e

Câu 90.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 27.
C. 8.
D. 9.
Câu 91. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 17 tháng.
B. 15 tháng.
C. 18 tháng.
D. 16 tháng.
Câu 92. Cho
√ số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.
A. |z| = 10.
B. |z| = 10.
C. |z| = 17.
D. |z| = 17.
Câu 93. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.

5
5
D. − < m < 0.
A. m ≥ 0.
B. m ≤ 0.
C. m > − .
4
4
Câu 94. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. .
B. 3.
C. 1.
D. .
2
2
Câu 95. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {3; 4}.
C. {4; 3}.

D. {5; 3}.

1
Câu 96. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.

A. m = −3, m = 4.
B. m = −3.
C. m = 4.
D. −3 ≤ m ≤ 4.
Câu 97. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞

x→+∞

f (x) a
A. lim
= .
x→+∞ g(x)
b
C. lim [ f (x) − g(x)] = a − b.
x→+∞

B. lim [ f (x)g(x)] = ab.
x→+∞

D. lim [ f (x) + g(x)] = a + b.
x→+∞

Câu 98. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.

C. Khối lập phương.

D. Khối tứ diện đều.


Câu 99. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.

C. Khối tứ diện đều.

D. Khối 20 mặt đều.

Câu 100.
Cho hàm sốZf (x), g(x)Zliên tục trên R. Trong các
mệnh đề nào sai?
Z
Z mệnh đề sau, Z
f (x)g(x)dx =

A.
Z
C.

f (x)dx g(x)dx.
Z
Z
( f (x) − g(x))dx =
f (x)dx − g(x)dx.

k f (x)dx = f

B.
Z
D.


f (x)dx, k ∈ R, k , 0.
Z
Z
( f (x) + g(x))dx =
f (x)dx + g(x)dx.

Câu 101. Khối đa diện đều loại {3; 3} có số đỉnh
A. 2.
B. 4.

C. 5.

D. 3.

Câu 102. Khối đa diện đều loại {3; 3} có số mặt
A. 5.
B. 3.

C. 2.

D. 4.
Trang 8/10 Mã đề 1


d = 60◦ . Đường chéo
Câu 103. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0






4a3 6
a3 6
2a3 6
3
.
B. a 6.
.
D.
.
A.
C.
3
3
3
Câu 104. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.
C. Khối lập phương.
D. Khối bát diện đều.
Câu 105. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 9 mặt.
C. 6 mặt.

D. 8 mặt.

Câu 106. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức

P = (2x2 + y)(2y2 + x) + 9xy là
27
A. 12.
B.
.
C. 27.
D. 18.
2
Câu 107. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?
A. 102.424.000.
B. 102.016.000.
C. 102.423.000.
D. 102.016.000.
Câu 108. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 1587 m.
B. 27 m.
C. 25 m.
D. 387 m.
Câu 109. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 24 m.
B. 8 m.
C. 12 m.

D. 16 m.
2−n
Câu 110. Giá trị của giới hạn lim
bằng
n+1
A. −1.
B. 1.
C. 0.
D. 2.
Câu 111. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Chỉ có (II) đúng.

C. Cả hai đều đúng.

D. Cả hai đều sai.

Câu 112. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
5
7
A. 9.
B. .
C. .
D. 6.
2
2

Câu 113. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√ C là

3
3
3
a 3
a
a
3
A.
.
B. a3 .
C.
.
D.
.
6
3
2
Câu 114. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là 4, phần ảo là 1.
Trang 9/10 Mã đề 1



Câu 115. Tính lim
x→2
A. 3.

x+2
bằng?
x
B. 1.

C. 0.

√3
Câu 116. [1-c] Cho a là số thực dương .Giá trị của biểu thức a : a2 bằng
7
5
2
A. a 3 .
B. a 3 .
C. a 3 .

D. 2.

4
3

Câu 117. Dãy!số nào có giới hạn bằng 0?
n
−2
.
B. un = n2 − 4n.

A. un =
3

n3 − 3n
C. un =
.
n+1

Câu 118.
Các khẳng định nào Z
sau đây là sai?
Z

Z

5

D. a 8 .
!n
6
D. un =
.
5

f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. B.
f (x)dx = F(x) +C ⇒
!0
Z
Z

Z
C.
k f (x)dx = k
f (x)dx, k là hằng số.
D.
f (x)dx = f (x).

A.

Z

f (u)dx = F(u) +C.

Câu 119. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
!
x+1
Câu 120. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
2017
4035
.
B. 2017.
C.
.

D.
.
A.
2018
2017
2018
x−2
Câu 121. Tính lim
x→+∞ x + 3
2
A. 2.
B. 1.
C. −3.
D. − .
3
x−3 x−2
x−3
x−2
Câu 122. [3-12212d] Số nghiệm của phương trình 2 .3 − 2.2 − 3.3 + 6 = 0 là
A. 2.
B. 1.
C. 3.
D. Vô nghiệm.
Câu 123. Nếu không sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Bốn tứ diện đều và một hình chóp tam giác đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Một tứ diện đều và bốn hình chóp tam giác đều.
2x + 1

x→+∞ x + 1
B. −1.

Câu 124. Tính giới hạn lim

1
.
D. 1.
2
Câu 125. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.

.
D.
.
36
24
6
12
1
Câu 126. Hàm số y = x + có giá trị cực đại là
x
A. −2.
B. −1.
C. 2.
D. 1.
2
x − 12x + 35
Câu 127. Tính lim
x→5
25 − 5x
2
2
A. .
B. −∞.
C. +∞.
D. − .
5
5
A. 2.

C.


Trang 10/10 Mã đề 1


Câu 128. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 4}.
B. {3; 5}.
C. {4; 3}.

D. {5; 3}.

Câu 129. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 2.
B. 7.
C. 1.
D. 3.
d = 300 .
Câu 130. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên CC = 3a. Thể tích V của khối lăng trụ đã cho. √


3a3 3
a3 3
3
3
A. V = 6a .
B. V = 3a 3.
C. V =
.

D. V =
.
2
2
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

D

C

2.

3. A

4.

B

5. A

6.


B

7.
9.

8. A

C
B

10.

11. A

12.
C

13.

14.

15. A
C

17.
19.

D

21.


18.

D

25. A

26. A
D

34. A

C
B

37.

36.

B

38.

C

D

40. A

B


41. A

42.
C

48.

D

50. A
52.

C
D

44.

B

45.

C

55. A

47.

B


49.

B

51.

D

54.

D

56.

57.

C

58.

59.

C

60. A

61.

C


62.
D

63.
67.

D

32. A

33.

65.

D

30. A

31. A

43.

C

28.

B

29.


39.

B

22.
24.

35.

B
D

20.

C

C

16.

23. A
27.

B

C
B
D

64. A


B
D

69. A

66.

D

68.

D

70.
1

C


72.

C

71.
73.

B

74. A


75.

B

76.

D
C

77.

C

78.

B

79.

C

80.

B

81.

C


82. A
D

83.
85. A

86.

87. A

88. A

89. A

90. A
D

91.

94.
D

95.

C

98.

99.


B

100. A

101.

B

102.

103.

B

104.

105.

B

106.

107. A

108.

109.

D
B


B
D
B

112.

B
B

D

114.

115.

D

116.

117. A

118.

119.

D

110. A


113.

121.

D

96. A

97. A

111.

B

92. A

C

93.

D

84.

C
B

120.

C

B

D

122. A

123.

D

124. A

125.

D

126. A

127. A

128.

129. A

130.

2

B
C




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×