Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn tập toán thptqg 1 (549)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (149.5 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. [1-c] Giá trị của biểu thức

log7 16
log7 15 − log7

A. 2.

B. −4.


4n2 + 1 − n + 2
Câu 2. Tính lim
bằng
2n − 3
A. +∞.
B. 2.

15
30

bằng
C. 4.



C.

D. −2.

3
.
2

D. 1.

x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác đều ABI có hai đỉnh A, √
B thuộc (C), đoạn thẳng √
AB có độ dài bằng

C. 6.
D. 2 3.
A. 2.
B. 2 2.

Câu 3. [3-1214d] Cho hàm số y =

Câu 4. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối bát diện đều.

C. Khối tứ diện đều.


D. Khối 12 mặt đều.

Câu 5. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
A. f 0 (0) = ln 10.
B. f 0 (0) =
.
C. f 0 (0) = 1.
D. f 0 (0) = 10.
ln 10
Câu 6. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. lim+ f (x) = lim− f (x) = a.
x→a

x→a

C. lim f (x) = f (a).
x→a

x→a

x→a

D. f (x) có giới hạn hữu hạn khi x → a.

Câu 7. Hàm số nào sau đây khơng có cực trị
x−2
1

B. y = x3 − 3x.
C. y =
.
A. y = x + .
x
2x + 1

2 + 3i)2
Câu 8. Xác
định
phần
ảo
của
số
phức
z
=
(

A. −6 2.
B. 7.
C. −7.

D. y = x4 − 2x + 1.

D. 6 2.

Câu 9. Cho hình chóp S .ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
√ phẳng vng góc với (ABCD). Thể tích khối chóp

√ S .ABCD là
3
3
3

a 3
a 2
a 3
A.
.
B.
.
C. a3 3.
D.
.
4
2
2
Câu 10. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 216 triệu.
B. 210 triệu.
C. 212 triệu.
D. 220 triệu.
Câu 11. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng (S AB). Thiết diện của

√mặt phẳng (AIC) có diện
√tích là
√ hình chóp S .ABCD với
11a2
a2 7
a2 5
a2 2
A.
.
B.
.
C.
.
D.
.
32
8
16
4
Câu 12.
Z [1233d-2] Mệnh đề nào sau đây sai?
A.

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.

Trang 1/11 Mã đề 1


Z
B.


k f (x)dx = k

Z

f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z
D.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z

Câu 13. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB)
√ bằng



a 6
C. a 6.
D. 2a 6.
.
B. a 3.

A.
2
Câu 14. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. −7, 2.
C. 0, 8.

D. 72.

Câu 15.
Z Trong cácα+1khẳng định sau, khẳng định nào sai? Z
x
A.
xα dx =
+ C, C là hằng số.
B.
dx = x + C, C là hằng số.
α+1
Z
Z
1
dx = ln |x| + C, C là hằng số.
C.
0dx = C, C là hằng số.
D.
x
Câu 16. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 3ac

A.
.
B.
.
C.
.
c+2
c+2
c+1

D.

3b + 2ac
.
c+3

Câu 17. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≥ 3.
B. −2 ≤ m ≤ 2.
C. −3 ≤ m ≤ 3.
D. m ≤ 3.
Câu 18. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 30.

C. 12.

D. 20.

Câu 19. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?

A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh của khối chóp bằng 2n.
D. Số mặt của khối chóp bằng 2n+1.
Câu 20. Cho hai hàm y = f (x), y = g(x)
Z có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
B. Nếu
Z
Z
C. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.

Câu 21. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 − 2
A. un =

.
B.
u
=
.
n
n2
5n − 3n2

C. un =

1 − 2n
.
5n + n2

D. un =

n2 + n + 1
.
(n + 1)2

Câu 22. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d nằm trên P hoặc d ⊥ P.
C. d nằm trên P.
D. d ⊥ P.
Câu 23. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 12.


C. 8.

D. 20.
Trang 2/11 Mã đề 1


Câu 24. Cho hàm số y = x3 − 2x2 + x + 1.
! Mệnh đề nào dưới đây đúng?
!
1
1
B. Hàm số nghịch biến trên khoảng −∞; .
A. Hàm số đồng biến trên khoảng ; 1 .
3
!3
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng ; 1 .
3
1
Câu 25. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. (−∞; −2] ∪ [−1; +∞). C. (−∞; −2) ∪ (−1; +∞). D. −2 ≤ m ≤ −1.
x+2
đồng biến trên khoảng
Câu 26. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?

A. 2.
B. Vô số.
C. 3.
D. 1.
2

2

Câu 27. [3-c] Giá trị nhỏ nhất và giá√trị lớn nhất của hàm √
số f (x) = 2sin x + 2cos x √
lần lượt là
A. 2 và 3.
B. 2 và 2 2.
C. 2 2 và 3.
D. 2 và 3.
√3
4
Câu 28. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
7
2
5
5
B. a 3 .
C. a 3 .
D. a 8 .
A. a 3 .
x−2
Câu 29. Tính lim
x→+∞ x + 3
2

A. −3.
B. − .
C. 1.
D. 2.
3
Câu 30. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 13.
B. Không tồn tại.
C. 0.
D. 9.
Câu 31. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
.
B. a 6.
.
D.
.
A.
C.
2
3
6
x
Câu 32.

√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
3
3
1
A.
.
B. .
C. .
D. 1.
2
2
2

Câu 33. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. 3.
C. 0.
D. −6.
Câu 34. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị
" nhỏ! nhất của biểu thức P = x + 2y thuộc tập nào dưới đây?
"
!
5
5
A.
;3 .
B. [3; 4).
C. (1; 2).
D. 2; .

2
2


ab.

1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
B. xy0 = ey − 1.
C. xy0 = −ey − 1.
D. xy0 = ey + 1.

Câu 35. [3-12217d] Cho hàm số y = ln
A. xy0 = −ey + 1.

Câu 36. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 5 đỉnh, 9 cạnh, 6 mặt. C. 6 đỉnh, 9 cạnh, 5 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
Câu 37. Giá trị của lim(2x2 − 3x + 1) là
x→1

A. 2.

B. 1.

C. +∞.

D. 0.


Câu 38. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
Trang 3/11 Mã đề 1


tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 18 tháng.
C. 15 tháng.
D. 17 tháng.
Câu 39. Khối đa diện đều loại {3; 4} có số mặt
A. 6.
B. 12.

C. 8.

D. 10.

Câu 40. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là 4, phần ảo là 1.
B. Phần thực là 4, phần ảo là −1.
C. Phần thực là −1, phần ảo là 4.
D. Phần thực là −1, phần ảo là −4.
Câu 41. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Có một hoặc hai.
C. Có một.

D. Khơng có.
d = 120◦ .
Câu 42. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
D. 3a.
A. 4a.
B. 2a.
C.
2

Câu 43. √
Thể tích của khối lập phương có cạnh bằng a 2


2a3 2
A.
.
B. V = a3 2.
C. V = 2a3 .
D. 2a3 2.
3
Câu 44. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 13.
B. log2 2020.
C. 2020.
D. log2 13.
Câu 45. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.

B. 4 mặt.
C. 10 mặt.

D. 8 mặt.

Câu 46. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 4.

D. 10.

C. 8.

Câu 47. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
C. .
A. −2.
B. − .
2
2

D. 2.

Câu 48. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2√
A. m = ±1.
B. m = ± 2.
C. m = ±3.
D. m = ± 3.
Câu 49. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng

1
ln 2
.
C. .
D. 1.
A. 2.
B.
2
2
Câu 50. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m ≤ 3.
C. m > 3.
D. m < 3.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 51. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là


3
3

a3 3
a
2
a
3
A.

.
B. 2a2 2.
C.
.
D.
.
24
24
12
x2 − 5x + 6
Câu 52. Tính giới hạn lim
x→2
x−2
A. 5.
B. 0.
C. 1.
D. −1.
Câu 53. Khối lập phương thuộc loại
A. {4; 3}.
B. {5; 3}.

C. {3; 4}.

D. {3; 3}.
Trang 4/11 Mã đề 1


Câu 54. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.

C. 5 mặt.
2n + 1
Câu 55. Tính giới hạn lim
3n + 2
1
A. .
B. 0.
2

C.

3
.
2

D. 3 mặt.

D.

2
.
3

Câu 56. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Khơng thay đổi.
B. Giảm đi n lần.
C. Tăng lên n lần.
D. Tăng lên (n − 1) lần.
Câu 57. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].

A. −7.

B. −2.

C. −4.

D.

67
.
27

Câu 58. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = 21.
C. P = 10.
D. P = −21.
Câu 59. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm tứ diện đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Năm hình chóp tam giác đều, khơng có tứ diện đều.
D. Bốn tứ diện đều và một hình chóp tam giác đều.
Câu 60. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.
B. 11 cạnh.

C. 10 cạnh.

D. 9 cạnh.


Câu 61. Khối đa diện đều loại {3; 3} có số đỉnh
A. 3.
B. 2.

C. 5.

D. 4.

Câu 62.
f (x), g(x) liên
đề nào sai? Z
Z Cho hàm số Z
Z tục trên R. Trong cácZmệnh đề sau, mệnh Z
A.
f (x)g(x)dx =
f (x)dx g(x)dx.
B.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
Z
Z
Z
C.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
D.
( f (x) + g(x))dx =

f (x)dx + g(x)dx.
Câu 63. Phần thực√và phần ảo của số √
phức z =
A. Phần thực là √2 − 1, phần ảo là √3.
C. Phần thực là 2, phần ảo là 1 − 3.




2 − 1 − 3i lần lượt l √

B. Phần thực là 1√− 2, phần ảo là − √3.
D. Phần thực là 2 − 1, phần ảo là − 3.

Câu 64. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.
B. {3; 3}.
C. {5; 3}.

D. {4; 3}.

Câu 65. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Bốn mặt.
C. Năm mặt.

D. Ba mặt.

Câu 66. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.

B. m , 0.
C. m > 0.

D. m < 0.

Câu 67. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 = 2 x . ln 2.
B. y0 = x
.
2 . ln x
Câu 68. [3-1229d] Đạo hàm của hàm số y =
1 − 4 ln 2x
1
A. y0 =
.
B. y0 = 3
.
3
2x ln 10
2x ln 10

C. y0 =

1
.
ln 2

log 2x


x2
1 − 2 ln 2x
C. y0 = 3
.
x ln 10

D. y0 = 2 x . ln x.

D. y0 =

1 − 2 log 2x
.
x3
Trang 5/11 Mã đề 1


Câu 69. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.
B. 3, 03 triệu đồng.
C. 2, 25 triệu đồng.
D. 2, 20 triệu đồng.
Câu 70. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 7 năm.
B. 8 năm.

C. 9 năm.
D. 10 năm.
Câu 71. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 12.

C. 20.

D. 10.

Câu 72. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vô số.
B. 2.
C. 1.
D. 3.
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 73. Giá trị lớn nhất của hàm số y =
m−x
3
A. 0.
B. −5.
C. 1.
D. −2.
 π
Câu 74. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2



1 π3
2 π4
3 π6
A.
e .
e .
B.
C. e .
D. 1.
2
2
2
Câu 75. Khối đa diện đều loại {3; 5} có số cạnh
A. 30.
B. 12.

C. 8.

D. 20.

Câu 76. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
C. 9.
D. .
A. 6.
B. .
2

2
2
Câu 77. Tính
√4 mơ đun của số phức z biết
√ (1 + 2i)z = 3 + 4i.
A. |z| = 5.
B. |z| = 2 5.
C. |z| = 5.


D. |z| = 5.
!
3n + 2
2
Câu 78. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 4.
B. 2.
C. 3.
D. 5.
Câu 79. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 20 đỉnh, 30 cạnh, 12 mặt.
B. 12 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
Câu 80. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = R.
B. D = [2; 1].

C. D = (−2; 1).
2

D. D = R \ {1; 2}.

Câu 81. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + 3.
B. T = 4 + .
C. T = e + .
D. T = e + 1.
e
e
3
2
Câu 82. Giá
√ x − 3x − 3x + 2

√ trị cực đại của hàm số y =
A. 3 − 4 2.
B. −3 − 4 2.
C. −3 + 4 2.


D. 3 + 4 2.
Trang 6/11 Mã đề 1



7n2 − 2n3 + 1
Câu 83. Tính lim 3
3n + 2n2 + 1
7
2
A. .
B. - .
3
3

C. 1.

D. 0.

9t
Câu 84. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vô số.
B. 2.
C. 0.
D. 1.
d = 300 .
Câu 85. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
0
Độ dài cạnh bên CC = 3a. Thể tích V của
√ khối lăng trụ đã cho.3 √
3


3a
3
a 3
A. V = 3a3 3.
B. V =
.
C. V =
.
D. V = 6a3 .
2
2
Câu 86. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

αβ
α β
A. a = (a ) .
B. β = a β .
C. aα+β = aα .aβ .
D. aα bα = (ab)α .
a

Câu 87. [1] Biết log6 a = 2 thì log6 a bằng
A. 108.
B. 6.
C. 36.
D. 4.

2
Câu 88. [1228d] Cho phương trình (2 log3 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao

nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. Vô số.
B. 63.
C. 62.
D. 64.
tan x + m
nghịch biến trên khoảng
Câu 89. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
 π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. [0; +∞).
C. (1; +∞).
D. (−∞; 0] ∪ (1; +∞).
Câu 90. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.

C. Khối lập phương.

D. Khối bát diện đều.

Câu 91. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối tứ diện đều.

C. Khối bát diện đều.

D. Khối 12 mặt đều.


Câu 92. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 24.
B. 20.
C. 3, 55.
D. 15, 36.
Câu 93. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối lập phương.
C. Khối bát diện đều.
D. Khối lăng trụ tam giác.
Câu 94. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −9.
B. −5.
C. −12.
D. −15.
1
Câu 95. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 2 < m ≤ 3.
C. 2 ≤ m ≤ 3.
D. 0 ≤ m ≤ 1.
x+1
Câu 96. Tính lim
bằng
x→+∞ 4x + 3

1
1
A. 1.
B. .
C. 3.
D. .
3
4
Câu 97.
√ min |z − 1 − i|.
√ [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = 3. Tìm
A. 10.
B. 2.
C. 1.
D. 2.
Trang 7/11 Mã đề 1


Câu 98. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là
A. 8, 16, 32.
B. 2 3, 4 3, 38.
C. 6, 12, 24.
D. 2, 4, 8.
Câu 99. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 2.

C. 4.


D. 144.

Câu 100. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 27 lần.
Câu 101. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog
A. 5.

B. 25.

C.


a



5

bằng

5.

Câu 102. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −7.
B. −3.

C. Khơng tồn tại.
2n − 3
Câu 103. Tính lim 2
bằng
2n + 3n + 1
A. +∞.
B. −∞.
C. 1.
!2x−1
!2−x
3
3


Câu 104. Tập các số x thỏa mãn
5
5
A. (+∞; −∞).
B. [3; +∞).
C. [1; +∞).

D.

1
.
5

D. −5.

D. 0.


D. (−∞; 1].

Câu 105. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng

√M + m

A. 16.
B. 8 3.
C. 7 3.
D. 8 2.
Câu 106. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Bốn mặt.
B. Hai mặt.
C. Ba mặt.

D. Một mặt.

Câu 107. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Câu 108. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; −8)(.
B. A(−4; 8).
C. A(4; −8).
D. A(4; 8).
Câu 109. Bát diện đều thuộc loại

A. {3; 3}.
B. {4; 3}.

C. {3; 4}.

Câu 110. [1] Tập
! xác định của hàm số! y = log3 (2x + 1) là
!
1
1
1
B.
; +∞ .
C. −∞; .
A. − ; +∞ .
2
2
2

D. {5; 3}.
!
1
D. −∞; − .
2

Câu 111. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 3).
C. (2; 4; 6).

D. (2; 4; 4).
1
Câu 112. Hàm số y = x + có giá trị cực đại là
x
A. 2.
B. −2.
C. −1.
D. 1.
Câu 113. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
C. Cả ba đáp án trên.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Trang 8/11 Mã đề 1






Câu 114. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
9
3
3
B. 0 ≤ m ≤ .
C. m ≥ 0.
D. 0 ≤ m ≤ .
A. 0 < m ≤ .
4

4
4
0 0 0 0
0
Câu 115.
a. Khoảng cách từ C đến √
AC bằng
√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh √
a 6
a 6
a 6
a 3
A.
.
B.
.
C.
.
D.
.
2
7
3
2
Câu 116. Dãy số nào có giới hạn bằng 0?
!n
−2
2
A. un = n − 4n.

B. un =
.
3
4x + 1
bằng?
x→−∞ x + 1
B. −1.

2

2

!n
6
C. un =
.
5

D. un =

C. −4.

D. 4.

n3 − 3n
.
n+1

Câu 117. [1] Tính lim
A. 2.


Câu 118.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
B. 8.
C. 27.
D. 9.
A. 3 3.
Câu 119. [1] Đạo hàm của làm số y = log x là
1
1
A. y0 = .
B. y0 =
.
x
x ln 10

C.

1
.
10 ln x

D. y0 =

ln 10
.
x

Câu 120. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 0).

B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số đồng biến trên khoảng (1; 2).
D. Hàm số nghịch biến trên khoảng (1; +∞).
Câu 121. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất
điểm đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 12 m.
B. 8 m.
C. 24 m.
D. 16 m.
3

Câu 122. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e.
C. e3 .
D. e2 .
Câu 123. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. 0.
C. e2016 .
D. 22016 .
1 + 2 + ··· + n
Câu 124. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. Dãy số un khơng có giới hạn khi n → +∞.
B. lim un = .
2

C. lim un = 0.
D. lim un = 1.

x2 + 3x + 5
Câu 125. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. − .
B. .
C. 0.
D. 1.
4
4
Câu 126. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a 3
a3 6
a3 6
A.
.
B.
.

C.
.
D.
.
8
24
24
48
Câu 127. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 9 mặt.
D. 6 mặt.
Câu 128. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = 22.
C. y(−2) = −18.
D. y(−2) = 2.
Trang 9/11 Mã đề 1


Câu 129. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với
đáy một góc 45◦ và AB = 3a, BC = 4a.
√ Thể tích khối chóp S .ABCD là
3
10a 3
.
C. 10a3 .
D. 20a3 .

A. 40a3 .
B.
3
Câu 130. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 64cm3 .
C. 27cm3 .
D. 72cm3 .
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

2.

B

3.

D

4. A

5. A


C

6.

7.

8.

C

9.
11.

D

D

10.

B
C

13.

D

15. A

C


12.

B

14.

B

16. A
D

17.

C

18.

19.

C

20.

B

21.

C


22.

B

23.

24.

B

25.

D

D

26. A

27.

C

28.

C

29.

C


30.

C

31.

D

32.

33. A
35.

34. A
B

36.

37.

D

39.
41.

D

38. A
40.


C

43.

D

C

44.

45. A

46.

47. A

48. A

49. A

50. A

D
C

52.

C

53. A

55.

B

42.

B

51.

C

D

54.

B

56.

B

57.

B

58.

59.


B

60.

61.

D

62. A

63.

D

64.

65.

D

66.

67. A

68.
1

D

D

C
C
B
C


69. A
71.

70.
B

72.

73. A

74. A

75. A

76.

77. A

78. A

79. A

80. A


81. A

82.

C
B
D

C

83.

B

84.

B

85.

B

86.

B

87.

D
C


89.

90.
D

91.

C

D

98.

C

100.

D
B

103.

D

105. A

D

102.


C

104.

C

106. A

107.

C

108.

109.

C

110. A

111.

C

112.

113.
C


117.

116.
D

B
D
B

118. A

B

121.

D

114.

D

115.

123.

C

96.

B


99.

119.

D

94.

97.
101.

B

92.

93. A
95.

C

88.

120.
D

B

122. A


B

124.

B

125. A

126.

C

127. A

128.

C

130.

C

129.

D

2




×