Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn tập toán thptqg 3 (643)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (153.69 KB, 13 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
A. 3.

B. 2e + 1.

C. 2e.

Câu 2. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (−∞; 1).
C. R.
!4x
!2−x
3
2


Câu 3. Tập các số x thỏa mãn
3
#
# 2
"


!
2
2
2
A. −∞; .
B. −∞; .
C. − ; +∞ .
3
5
3

D.

2
.
e

D. (2; +∞).

"

!
2
D.
; +∞ .
5


Câu 4. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là




a3 3
a3 3
a3
3
.
B. a 3.
C.
.
D.
.
A.
4
3
12
Câu 5. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. −7.
C. −5.
D. Không tồn tại.
Câu 6. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 10 mặt.
B. 8 mặt.
C. 4 mặt.

D. 6 mặt.

 π

x
Câu 7. [2-c] Giá trị lớn nhất của hàm số y = e cos x trên đoạn 0; là
2

2 π4
1 π3
e .
B. 1.
C. e .
A.
2
2


3 π6
D.
e .
2
8
Câu 8. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 82.
B. 64.
C. 81.
D. 96.

Câu 9. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
A. −e.

B. − .
C. − .
e
2e
0
Câu 10. [2] Cho hàm số y = ln(2x + 1). Tìm m để y (e) = 2m + 1
1 + 2e
1 + 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
4 − 2e
4e + 2
4 − 2e
Câu 11. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 8.
C. 6.

D. −

1
.
e2

D. m =


1 − 2e
.
4e + 2

D. 4.

Câu 12. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 70, 128 triệu đồng. B. 50, 7 triệu đồng.
C. 20, 128 triệu đồng. D. 3, 5 triệu đồng.
Câu 13. Dãy số nào có giới hạn bằng 0?!
n
n3 − 3n
−2
A. un =
.
B. un =
.
n+1
3

!n
6
C. un =
.
5

D. un = n2 − 4n.


Câu 14. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 2.
C. y(−2) = 6.
D. y(−2) = −18.
Trang 1/10 Mã đề 1


Câu 15. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. 1.

B. +∞.

n−1
Câu 16. Tính lim 2
n +2
A. 1.
B. 2.

C. −∞.

un
bằng
vn
D. 0.

C. 0.


D. 3.

Câu 17. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. Vô nghiệm.
C. 3.
D. 2.
Câu 18. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp đôi.
C. Tăng gấp 8 lần.
D. Tăng gấp 4 lần.
Câu 19. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. V = 4π.
B. 16π.
C. 32π.
D. 8π.
!2x−1
!2−x
3
3


Câu 20. Tập các số x thỏa mãn
5
5
A. [3; +∞).
B. (+∞; −∞).

C. (−∞; 1].
D. [1; +∞).
Câu 21. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 4 đỉnh, 12 cạnh, 4 mặt.
Câu 22. [12214d] Với giá trị nào của m thì phương trình
A. 0 < m ≤ 1.

B. 2 < m ≤ 3.

1
3|x−2|

= m − 2 có nghiệm

C. 2 ≤ m ≤ 3.

D. 0 ≤ m ≤ 1.

Câu 23. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 3.
B.

.
C. 2a 6.
D. a 6.
2
Câu 24. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 20 triệu đồng.
C. 2, 25 triệu đồng.
D. 2, 22 triệu đồng.
Câu 25. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều sai.

C. Chỉ có (II) đúng.

D. Cả hai đều đúng.

Câu 26. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.
B. 8 năm.
C. 7 năm.

D. 10 năm.
Câu 27. Khối đa diện đều loại {3; 5} có số cạnh
A. 8.
B. 12.

C. 20.

D. 30.
Trang 2/10 Mã đề 1


1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



9 11 + 19
18 11 − 29
9 11 − 19
2 11 − 3
A. Pmin =
. B. Pmin =
. C. Pmin =
. D. Pmin =
.
9
21
9

3

Câu 29. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. Vô số.
C. 63.
D. 64.

Câu 28. [12210d] Xét các số thực dương x, y thỏa mãn log3

Câu 30. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối lập phương.

C. Khối tứ diện đều.

D. Khối 12 mặt đều.

Câu 31. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
B.
D.
.
C. 2a 2.

.
A. a 2.
4
2
Câu 32. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 3.
C. 1.
D. 2.
Câu 33. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. −1 + 2 sin 2x.
C. −1 + sin x cos x.
D. 1 + 2 sin 2x.
!
1
1
1
Câu 34. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 2.
B. .
C. 1.
D. 0.
2
1

Câu 35. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (1; +∞).
C. (1; 3).
D. (−∞; 3).
Câu 36. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
A. −2.
B. 2.
C. .
2

1
D. − .
2

d = 120◦ .
Câu 37. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
D. 2a.
A. 4a.
B. 3a.
C.
2


Câu 38. Phần thực và √
phần ảo của số phức

z
=
2

1

3i lần lượt √l


A. Phần thực là 1√− 2, phần ảo là − √3.
B. Phần thực là √2 − 1, phần ảo là √3.
C. Phần thực là 2 − 1, phần ảo là − 3.
D. Phần thực là 2, phần ảo là 1 − 3.
Câu 39. Phát biểu nào sau đây là sai?
1
A. lim k = 0.
n
C. lim un = c (un = c là hằng số).

B. lim qn = 0 (|q| > 1).
1
D. lim = 0.
n

2n + 1
Câu 40. Tính giới hạn lim
3n + 2
3
2
1

B. .
C. 0.
D. .
A. .
2
3
2
Câu 41. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 3 mặt.
D. 4 mặt.
Trang 3/10 Mã đề 1


Câu 42. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
Câu 43. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d nằm trên P.
C. d nằm trên P hoặc d ⊥ P.
D. d ⊥ P.
ln2 x
m
Câu 44. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x

e
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 24.
C. S = 22.
D. S = 135.
Câu 45. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Một hình chóp tứ giác và một hình chóp ngũ giác.
B. Hai hình chóp tứ giác.
C. Hai hình chóp tam giác.
D. Một hình chóp tam giác và một hình chóp tứ giác.
Câu 46. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 2ac
3b + 3ac
A.
.
B.
.
C.
.
c+2
c+3
c+1

3b + 2ac
.
c+2
π

Câu 47. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu √
thức T = a + b 3.

A. T = 3 3 + 1.
B. T = 2 3.
C. T = 4.
D. T = 2.
D.

Câu 48. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 2.
C. 1.

D. Vơ nghiệm.

Câu 49. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là
A. 6, 12, 24.
B. 2 3, 4 3, 38.
C. 8, 16, 32.
D. 2, 4, 8.
Câu 50. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 10.
C. ln 12.

D. ln 4.
Câu 51. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
B. log2 a =
.
C. log2 a = loga 2.
D. log2 a = − loga 2.
A. log2 a =
loga 2
log2 a
Câu 52. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.

B. 1.

C. 3.

1
3|x−1|

= 3m − 2 có nghiệm duy

D. 2.

Câu 53. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.
B. Khối lập phương.

C. Khối tứ diện.
D. Khối lăng trụ tam giác.
x+1
bằng
Câu 54. Tính lim
x→−∞ 6x − 2
1
1
A. .
B. .
2
6

C. 1.

D.

1
.
3
Trang 4/10 Mã đề 1


Câu 55. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
S .ABCD là
của AD, biết S H ⊥ (ABCD), S A =√a 5. Thể tích khối chóp √
2a3
2a3 3
4a3 3

4a3
A.
.
B.
.
C.
.
D.
.
3
3
3
3
Câu 56. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m > − .
B. m ≥ 0.
C. m ≤ 0.
D. − < m < 0.
4
4

Câu 57. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √



a3 6
a 2
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
6
6
18
36
Câu 58. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Trục ảo.
B. Đường phân giác góc phần tư thứ nhất.
C. Trục thực.
D. Hai đường phân giác y = x và y = −x của các góc tọa độ.
q
Câu 59. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [0; 1].
C. m ∈ [−1; 0].
D. m ∈ [0; 2].

log 2x
Câu 60. [3-1229d] Đạo hàm của hàm số y =

x2
1
1 − 4 ln 2x
1 − 2 ln 2x
1 − 2 log 2x
.
C. y0 = 3
.
D. y0 =
.
.
B. y0 = 3
A. y0 =
3
x
x ln 10
2x ln 10
2x3 ln 10
Câu 61. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 64cm3 .
B. 72cm3 .
C. 27cm3 .
D. 46cm3 .
Câu 62. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. −2.

C. 4.

D. 2.

Câu 63. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối 20 mặt đều.

D. Khối tứ diện đều.

C. Khối bát diện đều.

Câu 64. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞
x→+∞
f (x) a
= .
B. lim [ f (x) − g(x)] = a − b.
A. lim
x→+∞
x→+∞ g(x)
b
C. lim [ f (x) + g(x)] = a + b.
D. lim [ f (x)g(x)] = ab.
x→+∞

x→+∞

[ = 60◦ , S O
Câu 65. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD

vng góc với mặt đáy và S O = a.√Khoảng cách từ A đến (S
√ BC) bằng


2a 57
a 57
a 57
A. a 57.
B.
.
C.
.
D.
.
19
19
17
9t
Câu 66. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 1.
B. Vô số.
C. 0.
D. 2.
Câu 67. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.
Trang 5/10 Mã đề 1



Câu 68. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên (n − 1) lần. B. Tăng lên n lần.
C. Giảm đi n lần.
D. Không thay đổi.
Câu 69. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.

B. 1.

C. 2.

D. 3.

Câu 70. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
1
bằng
Câu 71. [1] Giá trị của biểu thức log √3
10
1
1

A. − .
B. −3.
C. .
D. 3.
3
3


Câu 72. Tìm giá trị lớn nhất của√hàm số y = x + 3 + 6 −√x

C. 2 + 3.
D. 2 3.
A. 3.
B. 3 2.
2n − 3
Câu 73. Tính lim 2
bằng
2n + 3n + 1
A. +∞.
B. −∞.
C. 1.
D. 0.
x−2 x−1
x
x+1
Câu 74. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham

x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−3; +∞).
C. [−3; +∞).
D. (−∞; −3].
Câu 75. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −5.
B. −9.
C. −12.
D. −15.
1
Câu 76. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. (−∞; −2] ∪ [−1; +∞). B. −2 < m < −1.
C. −2 ≤ m ≤ −1.
D. (−∞; −2) ∪ (−1; +∞).
Câu 77. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b

C. lim− f (x) = f (a) và lim− f (x) = f (b).
D. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b

x→a

x→b

Câu 78. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 20 đỉnh, 30 cạnh, 20 mặt.
D. 12 đỉnh, 30 cạnh, 20 mặt.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 79. Cho hình chóp S .ABC có BAC
Thể tích khối chóp S .ABC là




a3 3
a3 2
a3 3
2
B.
.
C.

.
D.
.
A. 2a 2.
12
24
24
Trang 6/10 Mã đề 1


Câu 80. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là

10a3 3
3
3
3
A. 10a .
B. 20a .
C. 40a .
D.
.
3
Câu 81. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là 4.
B. Phần thực là −3, phần ảo là −4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là 3, phần ảo là −4.
Câu 82.√Thể tích của tứ diện đều √
cạnh bằng a



3
3
a 2
a3 2
a3 2
a 2
.
B.
.
C.
.
D.
.
A.
4
2
6
12
Câu 83. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD

√ là

3
3
3

3
8a 3
a 3
4a 3
8a 3
A.
.
B.
.
C.
.
D.
.
9
9
9
3
x−2
Câu 84. Tính lim
x→+∞ x + 3
2
A. 1.
B. 2.
C. − .
D. −3.
3
Câu 85. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
1
ab

ab
1
.
C.
A. √
.
B. 2
.
D.
.


a + b2
a2 + b2
2 a2 + b2
a2 + b2
1

Câu 86. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = (−∞; 1).
C. D = R.

D. D = R \ {1}.

Câu 87. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của


√mặt phẳng (AIC) có diện tích

√ hình chóp S .ABCD với
2
2
2
2
a 7
a 2
11a
a 5
.
B.
.
C.
.
D.
.
A.
16
8
4
32
Câu 88. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vuông góc
Thể tích khối chóp S .ABC√là

√ với đáy và S C = a 3.3 √
3

a 3
a 6
a3 3
2a3 6
A.
.
B.
.
C.
.
D.
.
2
12
4
9
Câu 89. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 5%.
B. 0, 7%.
C. 0, 6%.
D. 0, 8%.
Câu 90. Khối lập phương thuộc loại
A. {3; 4}.
B. {5; 3}.

C. {4; 3}.

D. {3; 3}.


Câu 91. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (1; 3; 2).
C. (2; 4; 3).
D. (2; 4; 6).
Câu 92. Trong các mệnh đề dưới đây, mệnh đề nào sai?
!
un
A. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
Trang 7/10 Mã đề 1


!
un
C. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
!vn
un
= +∞.
D. Nếu lim un = a > 0 và lim vn = 0 thì lim
vn
Câu 93. Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z − 2√− 2i|. Tính |z|.

A. |z| = 10.
B. |z| = 17.

C. |z| = 10.
D. |z| = 17.
Câu 94. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 30.
2−n
bằng
Câu 95. Giá trị của giới hạn lim
n+1
A. 2.
B. 1.
Câu 96. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.
1 − 2n
Câu 97. [1] Tính lim
bằng?
3n + 1
2
1
A. − .
B. .
3
3

C. 12.

D. 20.

C. 0.


D. −1.

C. Khối 20 mặt đều.

D. Khối bát diện đều.

C. 1.

D.

Câu 98. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m , 0.
C. m < 0.

2
.
3

D. m > 0.

Câu 99. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = 10.
C. P = −21.
D. P = 21.
[ = 60◦ , S A ⊥ (ABCD).
Câu 100. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh S C là a. Thể tích khối√chóp S .ABCD là



a3 2
a3 3
a3 2
3
.
B. a 3.
C.
.
D.
.
A.
12
4
6
Câu 101. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (II) và (III).

B. Cả ba mệnh đề.

C. (I) và (III).

Câu 102.
Các khẳng định nào Z

sau đây là sai?
Z
A.
Z
C.

f (x)dx = F(x) + C ⇒
!0
f (x)dx = f (x).

f (t)dt = F(t) + C. B.

Z
Z

D.

D. (I) và (II).
Z

f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
Z
k f (x)dx = k
f (x)dx, k là hằng số.

Câu 103. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√M + m


√ của hàm số. Khi đó tổng
A. 7 3.
B. 8 2.
C. 16.
D. 8 3.
cos n + sin n
Câu 104. Tính lim
n2 + 1
A. +∞.
B. −∞.
C. 0.
D. 1.
Trang 8/10 Mã đề 1


ln x p 2
1
Câu 105. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
8
1
1
A. .
B. .
C. .
D. .
9

3
9
3
2
x − 12x + 35
Câu 106. Tính lim
x→5
25 − 5x
2
2
C. +∞.
D. .
A. −∞.
B. − .
5
5
√3
Câu 107. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. − .
B. 3.
C. −3.
D. .
3
3
√3
4
Câu 108. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
2

5
7
5
A. a 3 .
B. a 3 .
C. a 3 .
D. a 8 .
Câu 109. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a3 3
a3 6
a 6
.
B.
.
C.
.
D.
.
A.
24
8
24
48

6
Câu 110. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2 f (x3 ) − √
. Tính
3x
+
1
Z 1
f (x)dx.
0

A. 4.

B. 6.

C. −1.

D. 2.

Câu 111. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
B. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
Câu 112. Mệnh đề nào sau đây sai?
Z
A. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
!0
Z
D.
f (x)dx = f (x).
Câu 113. Nếu khơng sử dụng thêm điểm nào khác ngồi các đỉnh của hình lập phương thì có thể chia hình
lập phương thành
A. Năm hình chóp tam giác đều, khơng có tứ diện đều.
B. Một tứ diện đều và bốn hình chóp tam giác đều.
C. Bốn tứ diện đều và một hình chóp tam giác đều.
D. Năm tứ diện đều.
Câu 114. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
Câu 115. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Trang 9/10 Mã đề 1


Câu 116. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số mặt của khối chóp.
Câu 117. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng

cách giữa hai đường thẳng BD và√S C bằng



a 6
a 6
a 6
A. a 6.
B.
.
C.
.
D.
.
2
3
6
Câu 118. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 144.
C. 24.
D. 4.
1
Câu 119. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y

A. xy = e + 1.
B. xy = −e + 1.
C. xy0 = ey − 1.
D. xy0 = −ey − 1.
Câu 120. Hàm số nào sau đây khơng có cực trị
A. y = x3 − 3x.

B. y = x4 − 2x + 1.

C. y =

x−2
.
2x + 1

1
D. y = x + .
x

Câu 121. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 2.

B. 3.

C. +∞.

D. 1.


Câu 122. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
Câu 123.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 9.
C. 8.
D. 27.
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 124. Giá trị lớn nhất của hàm số y =
m−x
3
A. −2.
B. 0.
C. 1.
D. −5.
1
Câu 125. Hàm số y = x + có giá trị cực đại là
x
A. 2.
B. −1.
C. −2.
D. 1.
Câu 126. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.

B. 20.

C. 12.

D. 8.

[ = 60◦ , S O
Câu 127. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S
√ BC) bằng

2a 57
a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
19
17
19
Câu 128. Khối đa diện đều loại {4; 3} có số mặt
A. 12.
B. 10.


C. 6.

D. 8.

Câu 129. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
đề nào dưới đây đúng?
!
!
1
1
B. Hàm số đồng biến trên khoảng ; 1 .
A. Hàm số nghịch biến trên khoảng −∞; .
3
3
!
1
C. Hàm số nghịch biến trên khoảng (1; +∞).
D. Hàm số nghịch biến trên khoảng ; 1 .
3
Trang 10/10 Mã đề 1


Câu 130. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
.

D. 34.
A. 68.
B. 5.
C.
17
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2. A
C

3.

D

5.

D

6.

7. A


8.

9.

C

10.

11.

C

12.

13.

C

4.

C
D
C

14.

B

D


15.

D

16.

C

17.

D

18.

C

20.

D

21.

C

22.

23.

B


24.

D

25.

C

27.

26. A
28.

D

30.

31.

C

33.

34.

D

29. A

32. A

C

D
B

35. A

36. A

37.

38.
40.

D

C

39.

C
B

41.

C

42. A

43.


C

44. A

45.

C

46. A

47.

C

B

48.

49. A

C

50. A

51. A

52.

B


53.

54.

B

55.

56. A
58.

D

C

59.

C
C

B

61.

62.

B

63. A

65.

66.
68.

D
C
1

D

57.

60.
64. A

C

B

67.

D

69.

D


70. A

72.

71. A
D

74.

C

75.

C

76.

D

73.

B

77.

B

78.

B

79.


C

80.

B

81.

C

82.

D

83. A

84. A

85. A

86. A

87.

B

89.

B


88.

B

90.
92.

D

93.

94.

D

95.

96.
98.
102.

B

C
D

D

107.

109. A

110. A

111. A
C

113.

B

115. A

B

116.

117.

D
B

119.

120.

C

121. A


122.

C

123. A

124.

C

105. A

108. A

118.

D

103.

106.

114.

C

101.

B


112.

D

99.
C

104.

C

97. A

C

100.

D

91.

C

B

C

125.

C

C

126.

C

127.

128.

C

129.

130.

C

2

D

D



×