Tài liệu Free pdf LATEX
BÀI TẬP ƠN TẬP MƠN TỐN THPT
(Đề thi có 5 trang)
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số mặt của khối chóp bằng 2n+1.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
Câu 2. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
3
2a3 3
4a3 3
a3 3
5a 3
.
B.
.
C.
.
D.
.
A.
3
3
3
2
Câu 3. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. −e2 .
C. 2e2 .
D. 2e4 .
Câu 4. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. (−∞; −3].
B. [1; +∞).
C. [−3; 1].
D. [−1; 3].
Câu 5. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích√khối chóp S .ABCD là √
√
√
2a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D. a3 3.
3
6
3
log(mx)
Câu 6. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m ≤ 0.
C. m < 0 ∨ m = 4.
D. m < 0 ∨ m > 4.
Câu 7. Tính lim
x→3
x2 − 9
x−3
C. +∞.
√
Câu 8. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
A. .
B. 3.
C. −3.
3
A. 6.
B. −3.
Câu 9. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
1 − 2n
A. un =
.
B.
u
=
.
n
n2
5n + n2
C. un =
n2 + n + 1
.
(n + 1)2
D. 3.
1
D. − .
3
D. un =
n2 − 2
.
5n − 3n2
Câu 10. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 6).
C. (2; 4; 4).
D. (2; 4; 3).
Câu 11. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 6
a 3
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
48
24
24
8
Câu 12. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (0; −2).
C. (2; 2).
D. (1; −3).
Trang 1/5 Mã đề 1
Câu 13. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng
√
√
√
14 3
20 3
.
B. 6 3.
.
D. 8 3.
A.
C.
3
3
Câu 14. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 6 mặt.
C. 7 mặt.
D. 8 mặt.
Câu 15. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −3.
B. Không tồn tại.
C. −7.
D. −5.
Câu 16. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 1.
B. 2.
1
3|x−1|
C. 4.
= 3m − 2 có nghiệm duy
D. 3.
Câu 17. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 22.
B. y(−2) = 2.
C. y(−2) = 6.
D. y(−2) = −18.
Câu 18. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 8.
C. 20.
D. 12.
Câu 19. Khối đa diện đều loại {3; 5} có số mặt
A. 8.
B. 20.
C. 30.
D. 12.
Câu 20. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng
√
a 3
a
a
A. a.
B.
.
C. .
D. .
2
3
2
Câu 21. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (−∞; −1).
C. (−1; 1).
D. (−∞; 1).
Câu 22. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
A. 34.
B. 68.
C. 5.
D.
.
17
Câu 23. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 8.
C. 12.
D. 6.
Câu 24. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −3.
B. m = −2.
C. m = 0.
D. m = −1.
Câu 25. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 4 − 2 ln 2.
B. e.
C. −2 + 2 ln 2.
D. 1.
Câu 26. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối 12 mặt đều.
D. Khối bát diện đều.
C. Khối tứ diện đều.
log2 240 log2 15
−
+ log2 1 bằng
log3,75 2 log60 2
A. 3.
B. 4.
C. −8.
D. 1.
1
Câu 28. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = ey + 1.
B. xy0 = −ey − 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.
Câu 27. [1-c] Giá trị biểu thức
Trang 2/5 Mã đề 1
Câu 29. Cho z là√nghiệm của phương trình x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z
−1 − i 3
−1 + i 3
A. P =
.
B. P = 2i.
C. P =
.
D. P = 2.
2
2
Câu 30. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
f (x)dx = f (x).
B.
Z
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
f (x)dx = F(x) + C.
D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
Câu 31. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −9.
B. −15.
C. −5.
D. −12.
Câu 32. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. .
B. 5.
C. 7.
D.
.
2
2
Câu 33. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m ≤ 3.
C. m > 3.
D. m < 3.
2mx + 1
1
Câu 34. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −5.
B. 1.
C. −2.
D. 0.
Câu 35. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. log2 13.
C. 13.
D. log2 2020.
Câu 36. Cho hình chóp S .ABCD có đáy ABCD là hình thang vng tại A và D; AD = CD = a; AB = 2a;
tam giác√S AB đều và nằm trong mặt
Thể tích khối chóp S .ABCD là
√ phẳng vng góc với 3(ABCD).
√
√
a3 2
a 3
a3 3
.
B.
.
C.
.
D. a3 3.
A.
2
2
4
x−3 x−2 x−1
x
Câu 37. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. [2; +∞).
B. (2; +∞).
C. (−∞; 2].
D. (−∞; 2).
Câu 38. Bát diện đều thuộc loại
A. {3; 4}.
B. {5; 3}.
C. {4; 3}.
D. {3; 3}.
Câu 39.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 27.
C. 9.
D. 8.
Câu 40. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp là
√
√
A. 2, 4, 8.
B. 8, 16, 32.
C. 6, 12, 24.
D. 2 3, 4 3, 38.
Câu 41. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có một.
B. Khơng có.
C. Có hai.
D. Có vơ số.
Câu 42. [1] Tính lim
A. +∞.
x→3
x−3
bằng?
x+3
B. −∞.
C. 1.
D. 0.
Trang 3/5 Mã đề 1
Câu 43. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC√ theo a
√
a3 15
a3 5
a3 15
a3
A.
.
B.
.
C.
.
D.
.
25
25
5
3
Câu 44. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 4 lần.
B. Tăng gấp 8 lần.
C. Tăng gấp 6 lần.
D. Tăng gấp đôi.
Câu 45. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (2; +∞).
C. R.
Câu 46.
Z Các khẳng định nào sau
Z đây là sai?
f (u)dx = F(u) +C. B.
Z
k f (x)dx = k
f (x)dx, k là hằng số.
!
Z
Z
Z
0
C.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. D.
f (x)dx = f (x).
A.
f (x)dx = F(x) +C ⇒
Z
D. (0; 2).
Câu 47. [2]√Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 2√
B. m = ±3.
C. m = ±1.
D. m = ± 3.
A. m = ± 2.
Z 3
x
a
a
Câu 48. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
√
d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 4.
B. P = −2.
C. P = 28.
D. P = 16.
Câu 49. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 8.
C. 4.
D. 6.
x3 −3x+3
Câu 50. [2-c] Giá trị lớn nhất của hàm số f (x) = e
trên đoạn [0; 2] là
3
2
A. e.
B. e .
C. e .
D. e5 .
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 4/5 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
2.
1. A
3.
B
C
5.
7. A
9.
4.
C
6.
C
8. A
B
11.
C
10.
B
12.
B
13.
B
14. A
15.
B
16. A
17.
19.
18.
D
B
21.
22.
C
D
24.
B
27.
C
B
28.
D
D
D
30.
31.
D
32. A
34.
33. A
B
38. A
39. A
40.
41.
43. A
44.
45.
C
42.
C
D
47.
D
36. A
37. A
49.
D
26. A
29.
35.
D
20. A
23.
25.
D
D
B
46. A
48. A
C
50.
B
1
D