Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn tập toán thptqg 6 (643)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (147.46 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. lim f (x) = f (a).
x→a
x→a
x→a
C. f (x) có giới hạn hữu hạn khi x → a.
D. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a

Câu 2. Hàm số y = 2x + 3x + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−1; 0).
B. (−∞; 0) và (1; +∞). C. (0; 1).
D. (−∞; −1) và (0; +∞).
3

2

Câu 3. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt


và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là

√ hình chóp S .ABCD với mặt
2
2
2
a 7
11a
a2 2
a 5
.
B.
.
C.
.
D.
.
A.
16
8
32
4
Câu 4. Phát biểu nào sau đây là sai?
1
A. lim un = c (Với un = c là hằng số).
B. lim k = 0 với k > 1.
n
1

C. lim √ = 0.
D. lim qn = 1 với |q| > 1.
n
!
1
1
1
+ ··· +
Câu 5. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
5
3
A. .
B. 2.
C. .
D. +∞.
2
2

x2 + 3x + 5
Câu 6. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. − .
B. .
C. 0.
D. 1.

4
4
Câu 7. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số nghịch biến trên khoảng (−2; 1).
D. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).

Câu 8. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab. Giá
trị nhỏ
" nhất
! của biểu thức P = x + 2y thuộc tập nào dưới "đây?!
5
5
A.
;3 .
B. (1; 2).
C. 2; .
D. [3; 4).
2
2
Câu 9. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
B. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
!
un

C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
Câu 10. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. −1.
C. 6.

D. 2.
Trang 1/11 Mã đề 1


Câu 11. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp
√ là√
A. 8, 16, 32.
B. 2, 4, 8.
C. 2 3, 4 3, 38.
D. 6, 12, 24.
Câu 12. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3

.
B.
.
C.
.
D. a3 .
A.
24
6
12
Câu 13. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Hai mặt.
C. Một mặt.

D. Bốn mặt.

Câu 14. Khối lập phương thuộc loại
A. {4; 3}.
B. {3; 4}.

D. {5; 3}.

C. {3; 3}.

Câu 15. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. (2; +∞).
C. (0; 2).


D. R.

Câu 16. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 8.
C. 20.
D. 12.
x+1
Câu 17. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. .
B. 1.
C. 3.
D. .
4
3
Câu 18. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).

√ Thể tích khối chóp S 3.ABC
√ là

3
a 3
a 3
a3 3
a3 2

A.
.
B.
.
C.
.
D.
.
12
4
6
12
Câu 19. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


3
3
3
a
3
a
a
3
A. a3 .
B.
.
C.
.
D.

.
6
3
2
Câu 20. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
√ góc với đáy, S C = a3 √3. Thể tích khối chóp S .ABCD là
3
a 3
a 3
a3
A.
.
B.
.
C. a3 .
D.
.
3
9
3
Câu 21.! Dãy số nào sau đây có giới
!n hạn là 0?
n
4
5
A.
.
B.

.
e
3

!n
1
C.
.
3

!n
5
D. − .
3

Câu 22. Tìm giá trị của tham số m để hàm số y = −x3 + 3mx2 + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [1; +∞).
B. [−3; 1].
C. (−∞; −3].
D. [−1; 3].
Câu 23. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể tích của khối chóp S .ABC√ theo a


a3
a3 15
a3 15
a3 5
.

B.
.
C.
.
D.
.
A.
3
5
25
25
Câu 24. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 6 mặt.
C. 3 mặt.

D. 9 mặt.
Trang 2/11 Mã đề 1


Câu 25. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 4.

B. 1.

Câu 26. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 8.


1
3|x−1|

= 3m − 2 có nghiệm duy

C. 3.

D. 2.

C. 12.

D. 6.

Câu 27. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 216 triệu.
B. 210 triệu.
C. 212 triệu.
D. 220 triệu.
Câu 28. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 30.

C. 8.

D. 20.


Câu 29. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 13.
B. log2 2020.
C. 13.
D. 2020.
Câu 30. Dãy số nào có giới hạn bằng 0?
!n
n3 − 3n
6
A. un =
.
B. un =
.
n+1
5
x+1
Câu 31. Tính lim
bằng
x→−∞ 6x − 2
1
1
A. .
B. .
3
6
2−n
Câu 32. Giá trị của giới hạn lim
bằng
n+1
A. −1.

B. 1.

!n
−2
C. un =
.
3

D. un = n2 − 4n.

C. 1.

D.

C. 2.

D. 0.

1
.
2

π
Câu 33. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3

trị của biểu thức T = a + b 3.


A. T = 2.

B. T = 3 3 + 1.
C. T = 4.
D. T = 2 3.

Câu 34. [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 1.
B. 2.
C. 3.
D. 5.
a
1
Câu 35. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 4.
B. 7.
C. 1.
D. 2.
Câu 36. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.

C. Khối bát diện đều.

D. Khối 12 mặt đều.

n−1
Câu 37. Tính lim 2
n +2

A. 0.
B. 1.

C. 3.

D. 2.

Câu 38. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n3 lần.
B. n3 lần.
C. n3 lần.
D. 2n2 lần.
Câu 39. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
Trang 3/11 Mã đề 1


(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. Cả ba mệnh đề.

B. (I) và (II).

Câu 40. [1-c] Giá trị của biểu thức

log7 16
log7 15 − log7


A. −4.

B. −2.
x2 − 5x + 6
Câu 41. Tính giới hạn lim
x→2
x−2
A. 1.
B. 0.
0

0

C. (I) và (III).
15
30

D. (II) và (III).

bằng
C. 2.

D. 4.

C. −1.
0

0


D. 5.

0

Câu 42. Mặt phẳng (AB C ) chia khối lăng trụ ABC.A B C thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Hai khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Hai khối chóp tam giác.
Câu 43. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 12 mặt.
B. 20 đỉnh, 30 cạnh, 12 mặt.
C. 12 đỉnh, 30 cạnh, 20 mặt.
D. 20 đỉnh, 30 cạnh, 20 mặt.
Câu 44. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) có giá trị nhỏ nhất trên K.

B. f (x) xác định trên K.
D. f (x) có giá trị lớn nhất trên K.

[ = 60◦ , S O
Câu 45. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S
√ BC) bằng


a 57
a 57

2a 57
B.
.
C.
.
D.
.
A. a 57.
19
17
19
Câu 46. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối bát diện đều. C. Khối 12 mặt đều.
D. Khối 20 mặt đều.
Câu 47. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
B. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ đứng là hình lăng trụ đều.
D. Hình lăng trụ tứ giác đều là hình lập phương.


x
+
3
+
6 −√x
Câu 48.
Tìm
giá

trị
lớn
nhất
của
hàm
số
y
=

A. 2 3.
B. 3.
C. 2 + 3.


D. 3 2.

Câu 49. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [−1; 2).
B. (1; 2).
C. [1; 2].

D. (−∞; +∞).

Câu 50. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 14 năm.
C. 12 năm.

D. 11 năm.
Câu 51. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh
! đề nào dưới đây đúng?
1
A. Hàm số nghịch biến trên khoảng −∞; .
B. Hàm số nghịch biến trên khoảng (1; +∞).
!3
!
1
1
C. Hàm số nghịch biến trên khoảng ; 1 .
D. Hàm số đồng biến trên khoảng ; 1 .
3
3
Trang 4/11 Mã đề 1


Câu 52. Khối đa diện đều loại {5; 3} có số đỉnh
A. 30.
B. 12.

C. 20.

D. 8.

Câu 53. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. 1 + 2 sin 2x.
C. −1 + 2 sin 2x.


D. 1 − sin 2x.

Câu 54. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 24.

D. 144.

C. 4.

Câu 55. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
C. .
D. 9.
A. 6.
B. .
2
2
Câu 56. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 48cm3 .
C. 64cm3 .
D. 91cm3 .
Câu 57. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 3 đỉnh, 3 cạnh, 3 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 6 đỉnh, 6 cạnh, 4 mặt. D. 4 đỉnh, 6 cạnh, 4 mặt.
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).

Câu 58. Cho hình chóp S .ABC có BAC
Thể tích khối chóp S .ABC là



3
3
3

a
3
a
3
a
2
B.
.
C.
.
D.
.
A. 2a2 2.
24
12
24
q
2
Câu 59. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h

có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].
C. m ∈ [−1; 0].
D. m ∈ [0; 4].
Câu 60. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 120 cm2 .
B. 160 cm2 .
C. 1200 cm2 .
D. 160 cm2 .
Câu 61. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (II) sai.

B. Câu (III) sai.

C. Khơng có câu nào D. Câu (I) sai.
sai.
Câu 62. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n3 lần.
C. n lần.
D. n2 lần.
x2 − 9
Câu 63. Tính lim
x→3 x − 3

A. 3.
B. +∞.
C. 6.
D. −3.
Câu 64.
Z Các khẳng định
Z nào sau đây là sai?
k f (x)dx = k

A.
Z
C.

Z

f (x)dx, k là hằng số.
B.
f (x)dx = F(x) +C ⇒
!0
Z
Z
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. D.
f (x)dx = f (x).

Z

f (u)dx = F(u) +C.

Trang 5/11 Mã đề 1



Câu 65. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vô số.
B. 2.
C. 3.
D. 1.
Câu 66. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối lăng trụ tam giác.
C. Khối lập phương.
D. Khối bát diện đều.
Câu 67. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √


a3 3
a3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.

12
4
4
8
un
Câu 68. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. −∞.
B. 1.
C. 0.
D. +∞.
Câu 69. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là



2a3 3
a3 3
4a3 3
5a3 3
A.
.
B.
.
C.
.
D.
.

3
2
3
3
Câu 70. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
1
Câu 71. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. −2.
3
x −1
Câu 72. Tính lim
x→1 x − 1
A. −∞.
B. +∞.

C. 1.

D. 2.

C. 3.

D. 0.

Câu 73. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng

rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 13 năm.
C. 10 năm.
D. 12 năm.
Câu 74. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
5
9
13
23
.
B. − .
C.
.
D.
.
A. −
100
16
25
100
Câu 75. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 7 mặt.
B. 9 mặt.
C. 6 mặt.
D. 8 mặt.
Câu 76. Khối đa diện đều loại {3; 3} có số mặt

A. 5.
B. 2.
4x + 1
Câu 77. [1] Tính lim
bằng?
x→−∞ x + 1
A. 4.
B. −1.
Câu 78. Dãy số nào sau đây có giới hạn khác 0?
1
1
A. .
B. √ .
n
n

C. 3.

D. 4.

C. 2.

D. −4.

C.

sin n
.
n


D.

n+1
.
n
Trang 6/11 Mã đề 1


Câu 79. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 7.
B. 0.

C. 5.

D. 9.

0 0 0 0
0
Câu 80.√ [2] Cho hình lâp phương
√ bằng
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
a 3
a 6
a 6
a 6
.
B.
.
C.

.
D.
.
A.
3
2
7
2
Câu 81. Khối chóp ngũ giác có số cạnh là
A. 9 cạnh.
B. 10 cạnh.
C. 12 cạnh.
D. 11 cạnh.

Câu 82. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 14.
C. ln 12.
D. ln 4.
Câu 83. [1] Đạo hàm của hàm số y = 2 x là
1
1
.
B. y0 =
.
C. y0 = 2 x . ln x.
D. y0 = 2 x . ln 2.
A. y0 = x
2 . ln x
ln 2

Câu 84. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
D. Cả ba đáp án trên.
Câu 85. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 2ac
A.
.
B.
.
C.
.
c+2
c+2
c+3
Câu 86. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng 2n + 1.
B. Số mặt của khối chóp bằng 2n+1.
C. Số mặt của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng 2n.

D.

3b + 3ac
.
c+1


Câu 87. Hàm số nào sau đây khơng có cực trị
1
A. y = x + .
B. y = x4 − 2x + 1.
x

x−2
C. y = x3 − 3x.
D. y =
.
2x + 1

Câu 88. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 62.
C. Vô số.
D. 64.
log 2x
Câu 89. [1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1
1 − 2 ln 2x
1 − 2 log 2x
0
0
0

A. y0 =
.
B.
y
=
.
C.
y
=
.
D.
y
=
.
2x3 ln 10
2x3 ln 10
x3 ln 10
x3
Câu 90. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P hoặc d ⊥ P.
B. d song song với (P).
C. d ⊥ P.
D. d nằm trên P.
Câu 91. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vơ nghiệm.
B. 3.
C. 1.

D. 2.
x+3

Câu 92. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 1.
B. 2.
C. Vô số.
D. 3.
Câu 93. Khối đa diện loại {3; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều.

C. Khối tứ diện đều.

D. Khối 12 mặt đều.
Trang 7/11 Mã đề 1


Câu 94. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. −3 ≤ m ≤ 3.
B. −2 ≤ m ≤ 2.
C. m ≤ 3.
D. m ≥ 3.
Câu 95. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 0.
B. Không tồn tại.
C. 13.
log 2x

Câu 96. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1 − 2 ln 2x
1
A. y0 =
.
B. y0 = 3
.
C. y0 = 3
.
3
2x ln 10
x ln 10
2x ln 10

D. 9.

1 − 2 log 2x
.
x3
d = 120◦ .
Câu 97. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
A. 4a.
B. 3a.
C. 2a.
D.
.
2

x
Câu 98. Tính diện tích hình phẳng
√ giới hạn bởi các đường y = xe , y = 0, x = 1.
3
1
3
A. 1.
B.
.
C. .
D. .
2
2
2
Z 1
6
2
3
. Tính
f (x)dx.
Câu 99. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
0
3x + 1
A. −1.

B. 4.

C. 2.

D. y0 =


D. 6.

Câu 100. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối


√ chóp S .ABCD là
3
3
a 3
a3 2
a3 6
a 3
.
B.
.
C.
.
D.
.
A.
48
24
16
48
Câu 101. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m > 3.
B. m ≥ 3.

C. m < 3.
D. m ≤ 3.
Câu 102. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 + 2; m = 1.
B. M = e−2 − 2; m = 1.
−2
C. M = e + 1; m = 1.
D. M = e2 − 2; m = e−2 + 2.


4n2 + 1 − n + 2
bằng
Câu 103. Tính lim
2n − 3
3
A. .
B. 2.
C. 1.
D. +∞.
2
Câu 104. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a
a
a 3
A. a.
B.
.
C. .

D. .
2
2
3
!
x+1
Câu 105. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2017
2016
.
B.
.
C.
.
D. 2017.
A.
2018
2018
2017
Câu 106. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 4.
B. −4.
C. −2.
D. 2.
Câu 107. Xét hai câu sau
Z
Z

Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
Trang 8/11 Mã đề 1


(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.

B. Cả hai câu trên đúng. C. Cả hai câu trên sai.

D. Chỉ có (I) đúng.

3
2
Câu 108. Giá

√ trị cực đại của hàm số y√= x − 3x − 3x + 2
B. −3 + 4 2.
C. −3 − 4 2.
A. 3 + 4 2.


D. 3 − 4 2.

Câu 109. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh

bên S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng



3a 38
a 38
3a
3a 58
.
B.
.
C.
.
D.
.
A.
29
29
29
29




Câu 110. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
9
3
A. 0 ≤ m ≤ .

B. m ≥ 0.
C. 0 ≤ m ≤ .
D. 0 < m ≤ .
4
4
4
Câu 111.
Z 0 Trong các khẳng định sau, khẳng định nào sai?
u (x)
A.
dx = log |u(x)| + C.
u(x)
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
C. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Câu 112. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 2.

2

C. 4.

2

D. 3.

Câu 113. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0

(AB0C) và


√ (A C D) bằng

a 3
a 3
2a 3
A.
.
B. a 3.
.
D.
.
C.
2
2
3
Câu 114. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 6).
C. (2; 4; 4).
D. (2; 4; 3).
[ = 60◦ , S O
Câu 115. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S BC) bằng



2a 57
a 57
a 57
A.
.
B.
.
C. a 57.
D.
.
19
19
17
1
Câu 116. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = −ey − 1.
B. xy0 = ey − 1.
C. xy0 = −ey + 1.
D. xy0 = ey + 1.


Câu 117. Phần thực
√ và phần ảo của số phức
√ z = 2 − 1 − 3i lần lượt√l


A. Phần thực là 2 −√1, phần ảo là − √3.
B. Phần thực là √2, phần ảo là 1 − √3.
C. Phần thực là 1 − 2, phần ảo là − 3.
D. Phần thực là 2 − 1, phần ảo là 3.
!
1
1
1
Câu 118. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 0.
B. .
C. 2.
D. 1.
2

Câu 119. Xác định phần ảo của số√phức z = ( 2 + 3i)2

A. 7.
B. −6 2.
C. −7.
D. 6 2.
Trang 9/11 Mã đề 1


1

. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e − 1.
B. xy = −e + 1.
C. xy0 = ey + 1.
D. xy0 = −ey − 1.

Câu 121. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã

√ cho là


πa3 3
πa3 3
πa3 6
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
6

3
6
2

Câu 122. [1] Biết log6 a = 2 thì log6 a bằng
A. 4.
B. 108.
C. 6.
D. 36.
Câu 120. [3-12217d] Cho hàm số y = ln

Câu 123. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là −3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là 3, phần ảo là 4.
Câu 124. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m = 0.
C. m , 0.

D. m > 0.

Câu 125. Khối đa diện đều loại {4; 3} có số đỉnh
A. 6.
B. 10.

D. 4.

C. 8.

x3 −3x+3

Câu 126. [2-c] Giá trị lớn nhất của hàm số f (x) = e
trên đoạn [0; 2] là
A. e.
B. e3 .
C. e2 .
D. e5 .
Câu 127. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
B. T = 4 + .
C. T = e + 1.
D. T = e + 3.
A. T = e + .
e
e
log(mx)
= 2 có nghiệm thực duy nhất
Câu 128. [1226d] Tìm tham số thực m để phương trình
log(x + 1)
A. m < 0 ∨ m > 4.
B. m ≤ 0.
C. m < 0.
D. m < 0 ∨ m = 4.
Câu 129. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 10 cạnh, 6 mặt.

D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 130. Bát diện đều thuộc loại
A. {3; 3}.
B. {4; 3}.

C. {5; 3}.

D. {3; 4}.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

B

2. A

3.

B

4.

5.


B

6. A

7. A
9.

D

8. A
B

10.

C
C

11.

D

12.

13.

D

14. A


15.

C

16. A

17. A

18. A
D

19.

D

20.

21.

C

22.

B

23.

C

25.


B

26.

C

27.

28.

D

30.

C

29. A
31.

C

32. A

B

33.

34.


B

35.

36.

B

37. A

38.

B

39.

40. A
42.

C

44. A

C
B
B

41.

C


43.

C

45.

B

46.

D

47. A

48.

D

49.

50.

D

51.

C

53.


C

55.

C

52.

C

54.

D

56.

D

57.

C

D

58.

D

59.


C

60.

D

61.

C
C

62.

B

63.

64.

B

65.
67.

66. A
68.

B


69.

C
1

D
B


70.

71.

B

72.
74. A

75.

76.

D

77. A

78.

D


79.

80. A

81.

82.

B

83.

84.

B

85.

88.

D

90. A
D

94. A
96.

B
D

B
D
B
D

87.

B

92.

D

73.

C

86.

B

89.

C

91.

C

93.


C

95. A
97.

B

D

98. A

99.

B

100. A

101.

B

102.

B

103.

104. A
106.

108.

C

C

105.

B

107.

B

109. A

B

110. A

111. A
113.

C

112.
114.

B


115. A

116.

B

117. A

118.

D

D

119.

D

120. A

121.

B

122. A

123.

B


124.

C

125.

126.

D

127.

128.

D

129. A

130.

D

2

C
D




×