TỐN PDF LATEX
TRẮC NGHIỆM ƠN THI MƠN TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
Câu 1. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích hình
hộp đã √cho là√1728. Khi đó, các kích thước của hình hộp là
B. 2, 4, 8.
C. 8, 16, 32.
D. 6, 12, 24.
A. 2 3, 4 3, 38.
x+1
Câu 2. Tính lim
bằng
x→+∞ 4x + 3
1
1
A. .
B. .
C. 3.
D. 1.
4
3
Câu 3. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. e.
B. −2 + 2 ln 2.
C. 4 − 2 ln 2.
D. 1.
√
Câu 4. Thể tích của khối lập phương có cạnh bằng a 2
√
3
√
√
2a
2
B. V = 2a3 .
C.
.
D. V = a3 2.
A. 2a3 2.
3
Câu 5. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17].
Xác suất để ba số được viết có tổng chia hết cho 3 bằng
1079
1728
1637
23
.
B.
.
C.
.
D.
.
A.
68
4913
4913
4913
Câu 6. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. −3.
C. 3.
D. 0.
1
Câu 7. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. 3.
B. − .
C. −3.
D. .
3
3
Câu 8. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
A. T = e + .
B. T = e + 3.
C. T = 4 + .
D. T = e + 1.
e
e
Câu 9. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (−∞; 1).
C. (2; +∞).
D. R.
Câu 10. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √
√
3
3
a 3
a 6
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
24
24
48
8
Câu 11. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x−2 y−3 z+4
x+1 y−4 z−4
=
=
và d0 :
=
=
đường thẳng d :
2
3
−5
3
−2
−1
x−2 y+2 z−3
x y−2 z−3
A.
=
=
.
B. =
=
.
2
2
2
2
3
−1
x−2 y−2 z−3
x y z−1
C.
=
=
.
D. = =
.
2
3
4
1 1
1
Câu 12. Trong các mệnh đề dưới đây, mệnh đề nào sai?
!
un
A. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
!
un
B. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
Trang 1/10 Mã đề 1
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= 0.
D. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
vn
Câu 13. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 1.
B. 3.
C. Vô nghiệm.
D. 2.
Câu 14. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 220 triệu.
B. 212 triệu.
C. 216 triệu.
D. 210 triệu.
Câu 15. [12214d] Với giá trị nào của m thì phương trình
A. 0 < m ≤ 1.
B. 2 ≤ m ≤ 3.
1
3|x−2|
= m − 2 có nghiệm
C. 0 ≤ m ≤ 1.
√3
4
Câu 16. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
7
5
5
A. a 3 .
B. a 3 .
C. a 8 .
D. 2 < m ≤ 3.
2
D. a 3 .
Câu 17. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. m ≤ 0.
C. m ≥ 0.
D. m > − .
A. − < m < 0.
4
4
Câu 18. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).
B. (II) và (III).
C. Cả ba mệnh đề.
D. (I) và (III).
Câu 19. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
√
8a3 3
8a3 3
a3 3
4a3 3
.
B.
.
C.
.
D.
.
A.
9
3
9
9
log 2x
Câu 20. [3-1229d] Đạo hàm của hàm số y =
là
x2
1 − 2 log 2x
1
1 − 4 ln 2x
1 − 2 ln 2x
A. y0 =
.
B. y0 = 3
.
C. y0 =
.
D. y0 = 3
.
3
3
x
2x ln 10
2x ln 10
x ln 10
Câu 21. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
B. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z
0
D. Nếu
f (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Trang 2/10 Mã đề 1
Câu 22. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 6.
B. V = 5.
C. V = 4.
D. V = 3.
x2 − 5x + 6
x→2
x−2
B. 5.
Câu 23. Tính giới hạn lim
A. 1.
C. 0.
D. −1.
Câu 24. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (−∞; 2).
B. Hàm số nghịch biến trên khoảng (0; 2).
C. Hàm số đồng biến trên khoảng (0; +∞).
D. Hàm số đồng biến trên khoảng (0; 2).
Câu 25. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Có một.
C. Khơng có.
D. Có hai.
Câu 26. Phát biểu nào sau đây là sai?
1
A. lim k = 0 với k > 1.
n
1
C. lim √ = 0.
n
B. lim un = c (Với un = c là hằng số).
D. lim qn = 1 với |q| > 1.
Câu 27. Cho z là nghiệm của phương trình x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z
√
−1 − i 3
−1 + i 3
A. P = 2i.
B. P = 2.
C. P =
.
D. P =
.
2
2
Câu 28. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {5}.
B. {5; 2}.
C. {2}.
D. {3}.
Câu 29. [1] Đạo hàm của làm số y = log x là
ln 10
1
.
B. y0 =
.
A. y0 =
x ln 10
x
Câu 30. Biểu thức nào sau đây không
√ 0 có nghĩa
−1
A. 0 .
B. (− 2) .
C.
1
.
10 ln x
C. (−1)−1 .
1
D. y0 = .
x
D.
√
−1.
−3
√
Câu 31. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √
√
√
a3 6
a 2
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
18
6
36
6
Câu 32. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, √biết S H ⊥ (ABCD). Thể tích khối chóp S .ABCD là
√
a3
a3
4a3 3
2a3 3
A.
.
B.
.
C.
.
D.
.
3
3
6
3
1
Câu 33. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = −e + 1.
C. xy0 = ey + 1.
D. xy0 = ey − 1.
Câu 34. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a 3
a
a
A.
.
B. .
C. .
D. a.
2
3
2
Câu 35.
bằng 1 là:
√ Thể tích của khối lăng√trụ tam giác đều có cạnh √
3
3
3
A.
.
B.
.
C.
.
2
4
12
D.
3
.
4
Trang 3/10 Mã đề 1
Câu 36. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim f (x) = f (a).
B. lim+ f (x) = lim− f (x) = a.
x→a
x→a
x→a
D. lim+ f (x) = lim− f (x) = +∞.
C. f (x) có giới hạn hữu hạn khi x → a.
x→a
x→a
Câu 37. Tìm giá trị của tham số m để hàm số y = −x + 3mx + 3(2m − 3)x + 1 nghịch biến trên khoảng
(−∞; +∞).
A. [−1; 3].
B. (−∞; −3].
C. [1; +∞).
D. [−3; 1].
3
2
3
Câu 38. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e3 .
C. e.
D. e2 .
!
1
1
1
Câu 39. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. .
B. +∞.
C. 2.
D. .
2
2
√
x2 + 3x + 5
Câu 40. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. .
B. − .
C. 1.
D. 0.
4
4
Câu 41. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp đôi.
B. Tăng gấp 6 lần.
C. Tăng gấp 4 lần.
D. Tăng gấp 8 lần.
2
Câu 42. Tính
√ (1 + 2i)z = 3 + 4i. √4
√ mô đun của số phức z biết
B. |z| = 2 5.
C. |z| = 5.
D. |z| = 5.
A. |z| = 5.
x−3 x−2 x−1
x
Câu 43. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. [2; +∞).
C. (2; +∞).
D. (−∞; 2].
Câu 44. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 3.
B. .
C. 2e + 1.
D. 2e.
e
Câu 45. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 + 2e
1 + 2e
1 − 2e
A. m =
.
B. m =
.
C. m =
.
D. m =
.
4e + 2
4 − 2e
4e + 2
4 − 2e
Câu 46. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
A. .
B. 9.
C. .
D. 6.
2
2
Câu 47. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n lần.
C. n3 lần.
D. n2 lần.
Câu 48. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. 2.
C. Vô số.
D. 3.
Câu 49. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối bát diện đều.
Câu 50. [1] Đạo hàm của hàm số y = 2 x là
1
A. y0 = 2 x . ln x.
B. y0 =
.
ln 2
C. Khối tứ diện đều.
D. Khối 20 mặt đều.
C. y0 = 2 x . ln 2.
D. y0 =
1
2 x . ln
x
.
Trang 4/10 Mã đề 1
Câu 51. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
A. 2.
B. .
C. − .
2
2
2−n
Câu 52. Giá trị của giới hạn lim
bằng
n+1
A. 1.
B. 2.
C. −1.
D. −2.
D. 0.
Câu 53. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 8 mặt.
C. 10 mặt.
D. 4 mặt.
Câu 54. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (4; 6, 5].
C. (4; +∞).
D. (−∞; 6, 5).
Câu 55. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối √
chóp S .ABMN là
√
√
√
4a3 3
5a3 3
2a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
3
3
3
2
Câu 56. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
B. V = S h.
C. V = 3S h.
A. V = S h.
3
2
D. V = S h.
Câu 57. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 11 năm.
C. 12 năm.
D. 10 năm.
!
1
1
1
+
+ ··· +
Câu 58. Tính lim
1.2 2.3
n(n + 1)
3
A. 0.
B. .
C. 2.
D. 1.
2
1
Câu 59. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (1; +∞).
B. D = (−∞; 1).
C. D = R \ {1}.
D. D = R.
Câu 60. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (−1; −7).
B. (0; −2).
C. (2; 2).
D. (1; −3).
π π
Câu 61. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 3.
C. 1.
D. 7.
Câu 62. Dãy số nào sau đây có giới hạn là 0?
n2 + n + 1
1 − 2n
A. un =
.
B. un =
.
2
(n + 1)
5n + n2
C. un =
n2 − 2
.
5n − 3n2
D. un =
n2 − 3n
.
n2
Câu 63. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m = 0.
B. m < 0.
C. m , 0.
D. m > 0.
√
Câu 64. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. Vô số.
C. 62.
D. 63.
Câu 65. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 1.
B. 2.
C. +∞.
D. 3.
Trang 5/10 Mã đề 1
Câu 66. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Hai khối chóp tứ giác.
C. Hai khối chóp tam giác.
D. Một khối chóp tam giác, một khối chóp tứ giác.
Câu 67. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối tứ diện.
B. Khối lăng trụ tam giác.
C. Khối bát diện đều.
D. Khối lập phương.
Câu 68. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2
A. 6.
B. 4.
C. 2.
Câu 69. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.
B. 4.
Z
Z
6
3x + 1
. Tính
1
f (x)dx.
0
D. −1.
1
3|x−1|
C. 1.
= 3m − 2 có nghiệm duy
D. 2.
1
Câu 70. Cho
1
A. .
4
3
xe2x dx = ae2 + b, trong đó a, b là các số hữu tỷ. Tính a + b
0
B.
1
.
2
C. 1.
Câu 71. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
B. − .
C. − 2 .
A. − .
e
2e
e
D. 0.
D. −e.
Câu 72. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≤ 3.
B. m > 3.
C. m < 3.
D. m ≥ 3.
Câu 73. Tính lim
x→5
2
A. − .
5
x2 − 12x + 35
25 − 5x
2
B. .
5
C. +∞.
D. −∞.
Câu 74. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Tăng lên (n − 1) lần. B. Không thay đổi.
C. Tăng lên n lần.
D. Giảm đi n lần.
π
Câu 75. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2
√
√
1 π3
3 π6
2 π4
A. 1.
B.
e .
C. e .
D.
e .
2
2
2
Câu 76. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 0.
B. 2.
Câu 77. Bát diện đều thuộc loại
A. {5; 3}.
B. {4; 3}.
C. 1.
D. +∞.
C. {3; 4}.
D. {3; 3}.
Câu 78. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 6 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
Câu 79. [4-1246d] Trong tất cả các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 2.
B. 1.
C. 5.
D. 3.
Trang 6/10 Mã đề 1
Câu 80. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√
√ C là
3
a3 3
a3
a 3
.
B.
.
C. a3 .
D.
.
A.
6
2
3
1 + 2 + ··· + n
Câu 81. [3-1132d] Cho dãy số (un ) với un =
. Mệnh đề nào sau đây đúng?
n2 + 1
1
A. lim un = 0.
B. lim un = .
2
C. Dãy số un khơng có giới hạn khi n → +∞.
D. lim un = 1.
Câu 82. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
x+1 y−5
z
d:
=
=
. Tìm véctơ chỉ phương ~u của đường thẳng ∆ đi qua M, vng góc với đường thẳng
2
2
−1
d đồng thời cách A một khoảng bé nhất.
A. ~u = (2; 2; −1).
B. ~u = (2; 1; 6).
C. ~u = (1; 0; 2).
D. ~u = (3; 4; −4).
Câu 83. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
B. log2 a = loga 2.
C. log2 a =
.
D. log2 a = − loga 2.
A. log2 a =
log2 a
loga 2
√
Câu 84. [4-1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 64.
C. Vơ số.
D. 63.
Câu 85. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 2.
B. 1.
C. 3.
D. Vô nghiệm.
Câu 86. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 30.
C. 8.
D. 20.
Câu 87. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số đỉnh của khối chóp bằng số mặt của khối chóp.
B. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 88. [3-12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 3.
C. Vô nghiệm.
D. 2.
Câu 89. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
√
A. y = log 41 x.
B. y = loga x trong đó a = 3 − 2.
D. y = log √2 x.
C. y = log π4 x.
Câu 90. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 0) và (2; +∞). B. (0; 2).
C. (0; +∞).
D. (−∞; 2).
Câu 91. Khối lập phương thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {5; 3}.
D. {3; 4}.
Câu 92. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 93. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 5
a3 5
a3 3
A.
.
B.
.
C.
.
D.
.
12
4
6
12
Trang 7/10 Mã đề 1
Câu 94. [2] Tổng các nghiệm của phương trình 9 x − 12.3 x + 27 = 0 là
A. 12.
B. 27.
C. 3.
D. 10.
Câu 95. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.
B. Cả hai câu trên đúng. C. Chỉ có (II) đúng.
D. Chỉ có (I) đúng.
π
Câu 96. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu thức T = a + b 3.
√
√
A. T = 4.
B. T = 2 3.
C. T = 2.
D. T = 3 3 + 1.
Câu 97. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
√
Câu 98. [1] Biết log6 a = 2 thì log6 a bằng
A. 108.
B. 6.
C. 4.
D. 36.
Câu 99.
Z Các khẳng định nào sau
Z đây là sai?
f (x)dx = F(x) + C ⇒
A.
Z
C.
f (x)dx = F(x) +C ⇒
f (t)dt = F(t) + C. B.
Z
f (u)dx = F(u) +C. D.
Z
Z
!0
f (x)dx = f (x).
Z
k f (x)dx = k
f (x)dx, k là hằng số.
Câu 100. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 3.
B. 4.
cos n + sin n
Câu 101. Tính lim
n2 + 1
A. +∞.
B. 1.
1
3|x−1|
= 3m − 2 có nghiệm duy
C. 1.
D. 2.
C. 0.
D. −∞.
Câu 102. Cho hình
√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là
√
3
3
√
a 15
a 5
a3 6
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Câu 103. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 2.
B. Vô nghiệm.
C. 1.
D. 3.
Câu 104.
[1233d-2] ZMệnh đề nào sau đây sai?
Z
A.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
B.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
C.
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Trang 8/10 Mã đề 1
Câu 105. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
.
D. 5.
A. 34.
B. 68.
C.
17
Câu 106. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9
tháng thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không
thay đổi trong thời gian gửi.
A. 0, 6%.
B. 0, 7%.
C. 0, 8%.
D. 0, 5%.
2x + 1
Câu 107. Tính giới hạn lim
x→+∞ x + 1
1
A. 2.
B. −1.
C. .
D. 1.
2
Câu 108. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 21.
C. 23.
D. 24.
5
Câu 109. Tính lim
n+3
A. 0.
B. 3.
C. 2.
D. 1.
Câu 110. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. −1.
B. 2.
C. 6.
D. 1.
d = 300 .
Câu 111. Cho khối lăng trụ đứng ABC.A B C có đáy ABC là tam giác vng tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V √của khối lăng trụ đã cho. √
√
3a3 3
a3 3
.
C. V =
.
D. V = 3a3 3.
A. V = 6a3 .
B. V =
2
2
Câu 112. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 7 mặt.
C. 9 mặt.
D. 8 mặt.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 113. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = e + 1.
B. xy = e − 1.
C. xy0 = −ey − 1.
D. xy0 = −ey + 1.
√
Câu 114.√ Xác định phần ảo của số phức z = ( 2 + 3i)2
√
A. −6 2.
B. 7.
C. −7.
D. 6 2.
0
0
0
Câu 115. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. 0, 8.
C. 72.
D. −7, 2.
x
Câu 116. Tính diện tích hình phẳng giới hạn bởi các đường
√ y = xe , y = 0, x = 1.
3
3
1
C.
.
D. .
A. 1.
B. .
2
2
2
2
Câu 117. [3-1224d] Tìm tham số thực m để phương trình log3 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m ≤ .
C. m ≥ .
D. m > .
4
4
4
4
Câu 118. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là
√
√
3
3
a 3
a 6
a3 3
a3 2
A.
.
B.
.
C.
.
D.
.
48
48
24
16
Câu 119. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
Trang 9/10 Mã đề 1
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
Câu 120. Dãy số nào sau đây có giới hạn khác 0?
n+1
sin n
A.
.
B.
.
n
n
1
C. √ .
n
D.
Câu 121. Tứ diện đều thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {5; 3}.
D. {3; 4}.
1
.
n
Câu 122. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích
hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.
B. 0, 5.
C. 0, 2.
D. 0, 3.
Câu 123. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√
√ của hàm số. Khi đó tổng M + m
√
A. 7 3.
B. 16.
C. 8 3.
D. 8 2.
Câu 124. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Cả hai đều sai.
C. Chỉ có (I) đúng.
!2x−1
!2−x
3
3
Câu 125. Tập các số x thỏa mãn
≤
là
5
5
A. [1; +∞).
B. (+∞; −∞).
C. (−∞; 1].
D. Chỉ có (II) đúng.
D. [3; +∞).
Câu 126. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Tứ diện đều.
B. Nhị thập diện đều. C. Thập nhị diện đều. D. Bát diện đều.
Câu 127. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 5.
B. 7.
C. .
D.
.
2
2
Câu 128. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
A. .
B. .
C. .
D. 4.
2
4
8
Câu 129. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Trục ảo.
C. Hai đường phân giác y = x và y = −x của các góc tọa độ.
D. Trục thực.
Câu 130. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
√
B. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
D. Cả ba đáp án trên.
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
D
2. A
3. A
4. A
D
5.
7.
B
9. A
D
11.
13. A
6.
B
8.
B
10.
B
12.
B
14.
B
15.
D
16.
17.
D
18. A
19.
21.
D
D
20.
C
B
22.
C
23.
D
24.
D
25.
D
26.
D
27.
B
28. A
29. A
30. A
31. A
32.
D
34.
D
33.
35.
D
B
36. A
D
37.
39.
C
41.
43.
38. A
40.
D
42.
46. A
47.
C
48.
49. A
51.
D
53. A
D
B
50.
C
52.
C
54.
55.
B
56. A
58.
B
59. A
D
60.
B
B
61.
C
62.
63.
C
64.
65.
C
44. A
B
45. A
57.
B
C
66.
B
67. A
68.
1
D
B
69.
70.
C
B
71.
B
72.
D
73.
B
74.
D
D
75.
77.
76. A
78.
C
79. A
81.
80.
B
83.
D
B
C
82.
84. A
C
85. A
86.
D
87. A
88.
D
89.
91.
D
90. A
B
93. A
95.
B
92.
C
94.
C
96. A
97. A
98.
C
99.
C
100.
C
101.
C
102.
C
103.
C
104. A
105.
C
106.
B
107. A
108. A
109. A
110.
C
112.
C
111.
113.
C
114.
B
115.
D
116. A
117.
B
118. A
119.
B
120. A
121. A
123.
D
B
125. A
122.
D
124.
D
126.
C
127.
C
128.
B
129.
C
130.
B
2