Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn tập toán thptqg 8 (700)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (150.44 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 8 lần.
B. Tăng gấp 6 lần.
C. Tăng gấp đôi.
D. Tăng gấp 4 lần.
x
9
Câu 2. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. −1.
B. 1.
C. 2.
D. .
2
x
y
Câu 3. [4-c] Xét các số thực dương x, y thỏa mãn 2 + 2 = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27


.
D. 12.
A. 27.
B. 18.
C.
2
1
Câu 4. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. −2 < m < −1.
C. (−∞; −2) ∪ (−1; +∞). D. (−∞; −2] ∪ [−1; +∞).
Câu 5. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −12.
B. −9.
C. −5.
D. −15.
Câu 6. Cho
Z hai hàm y Z= f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
A. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
0
B. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.

Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
1
Câu 7. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m−2 có nghiệm duy nhất?
3
A. 2.
B. 3.
C. 4.
D. 1.
Câu 8. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích hình
hộp đã √cho là√1728. Khi đó, các kích thước của hình hộp là
A. 2 3, 4 3, 38.
B. 6, 12, 24.
C. 8, 16, 32.
D. 2, 4, 8.
Câu 9. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +

g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên sai.

B. Chỉ có (II) đúng.

C. Chỉ có (I) đúng.

Câu 10. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 4 mặt.
C. 3 mặt.

D. Cả hai câu trên đúng.
D. 6 mặt.
Trang 1/10 Mã đề 1


Câu 11. Tính lim

x→+∞

x−2
x+3

2
B. − .
3

2
1−n
Câu 12. [1] Tính lim 2
bằng?
2n + 1
1
1
A. − .
B. .
2
2
A. 1.

C. −3.

D. 2.

C. 0.

D.

1
.
3

log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m < 0 ∨ m = 4.
D. m < 0 ∨ m > 4.


Câu 13. [1226d] Tìm tham số thực m để phương trình
A. m < 0.

B. m ≤ 0.
2n − 3
Câu 14. Tính lim 2
bằng
2n + 3n + 1
A. 0.
B. +∞.

C. −∞.

D. 1.

Câu 15. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 1.
B. 22016 .
C. e2016 .
D. 0.
Câu 16. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 10 năm.
C. 12 năm.
D. 11 năm.

d = 120◦ .
Câu 17. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a
.
A. 2a.
B. 3a.
C. 4a.
D.
2
Câu 18. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)

cùng vng
√ góc với đáy, S C = a3 3. Thể tích khối chóp S 3.ABCD

3
a 3
a
a 3
A.
.
B.
.
C.
.
D. a3 .
3
3
9

Câu 19. Khối đa diện đều loại {3; 4} có số đỉnh
A. 6.
B. 4.
C. 8.
D. 10.
Câu 20.√Biểu thức nào sau đây khơng có nghĩa
B. 0−1 .
A. (− 2)0 .

C.


−1.

−3

D. (−1)−1 .

Câu 21. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −3.
B. m = −2.
C. m = −1.

D. m = 0.

Câu 22. Dãy số nào sau đây có giới hạn khác 0?
n+1
1
A.
.

B. .
n
n

1
D. √ .
n

C.

sin n
.
n

Câu 23. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 48cm3 .
B. 91cm3 .
C. 84cm3 .
D. 64cm3 .
Câu 24. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. −e.
B. − 2 .
C. − .
D. − .
e
e

2e
2
x
Câu 25. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 1.
B. M = e, m = .
C. M = , m = 0.
D. M = e, m = 0.
e
e
Trang 2/10 Mã đề 1


Câu 26. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường



√ thẳng BD bằng
abc b2 + c2
a b2 + c2
b a2 + c2
c a2 + b2
.
B. √
.

C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
Câu 27. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A. a3 .
B.
.
C.
.
D.
.
6
24
12
Câu 28. Khẳng định nào sau đây đúng?
A. Hình lăng trụ đứng là hình lăng trụ đều.
B. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C. Hình lăng trụ tứ giác đều là hình lập phương.
D. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.

Câu 29.
√ Thể tích của khối lăng√trụ tam giác đều có cạnh bằng 1 là:

3
3
3
3
A.
.
B.
.
C. .
D.
.
4
12
4
2
!
!
!
4x
1
2
2016
Câu 30. [3] Cho hàm số f (x) = x
. Tính tổng T = f
+f
+ ··· + f
4 +2

2017
2017
2017
2016
A. T =
.
B. T = 1008.
C. T = 2017.
D. T = 2016.
2017
n−1
Câu 31. Tính lim 2
n +2
A. 2.
B. 0.
C. 1.
D. 3.
Câu 32. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
Câu 33. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −10.
B. P = 10.
C. P = 21.
D. P = −21.
π
Câu 34. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3


trị của biểu thức T = a + b 3.


C. T = 2 3.
D. T = 2.
A. T = 4.
B. T = 3 3 + 1.
Câu 35.
Z Các khẳng định nào sau
Z đây là sai?

Z

f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C. B.
f (x)dx = F(x) +C ⇒
!0
Z
Z
Z
C.
k f (x)dx = k
f (x)dx, k là hằng số.
D.
f (x)dx = f (x).
A.

Z


f (u)dx = F(u) +C.

Câu 36. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim− f (x) = f (a) và lim+ f (x) = f (b).
B. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim+ f (x) = f (a) và lim+ f (x) = f (b).
D. lim+ f (x) = f (a) và lim− f (x) = f (b).
x→a

x→b

x→a

x→b

Câu 37. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
A.
.

B. a 6.
C.
.
D.
.
6
2
3
Trang 3/10 Mã đề 1


1
Câu 38. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 ≤ m ≤ 1.
B. 2 ≤ m ≤ 3.
C. 2 < m ≤ 3.
D. 0 < m ≤ 1.
Câu 39. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
.
B. 1.
C. 2.
D. .
A.
2
2
Câu 40. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho

tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 15 tháng.
B. 17 tháng.
C. 16 tháng.
D. 18 tháng.
√3
Câu 41. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga a bằng
1
1
A. .
B. 3.
C. − .
D. −3.
3
3
Câu 42. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. m ≥ 0.
C. m ≤ 0.
D. − < m < 0.
A. m > − .
4
4
Z 1
6
2
3

Câu 43. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. −1.

B. 4.

C. 6.

D. 2.

Câu 44. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Khơng thay đổi.
B. Giảm đi n lần.
C. Tăng lên (n − 1) lần. D. Tăng lên n lần.
[ = 60◦ , S O
Câu 45. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ BC) bằng

√ với mặt đáy và S O = a. Khoảng cách từ A đến (S

a 57
a 57
2a 57
.
B. a 57.

C.
.
D.
.
A.
19
17
19
Câu 46. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {3; 5}.
B. {4; 3}.
C. {3; 4}.
D. {5; 3}.
Câu 47. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 3.

B. 0.

C. 1.

Câu 48. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 72.
B. −7, 2.
C. 7, 2.

D. 2.
D. 0, 8.


Câu 49. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
!
1
C. Hàm số đồng biến trên khoảng ; 1 .
3
Câu 50. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = R \ {0}.

!
1
B. Hàm số nghịch biến trên khoảng ; 1 .
3
!
1
D. Hàm số nghịch biến trên khoảng −∞; .
3

C. D = R \ {1}.

D. D = (0; +∞).
Trang 4/10 Mã đề 1


1
Câu 51. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (1; +∞).

C. (−∞; 3).
D. (1; 3).
Câu 52. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = x + ln x.
B. y0 = ln x − 1.

C. y0 = 1 + ln x.

Câu 53. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Nhị thập diện đều. B. Bát diện đều.
C. Thập nhị diện đều.
7n2 − 2n3 + 1
3n3 + 2n2 + 1
7
A. 1.
B. .
3
Câu 55. Khối đa diện đều loại {3; 5} có số đỉnh
A. 12.
B. 30.

D. y0 = 1 − ln x.
D. Tứ diện đều.

Câu 54. Tính lim

2
C. - .
3


D. 0.

C. 8.

D. 20.

Câu 56. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 16π.
B. 8π.
C. 32π.
D. V = 4π.
Câu 57. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
= +∞.
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
vn
B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= 0.
C. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
vn
!
un
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
Câu 58. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .

Tính thể√tích của khối chóp S .ABC theo a


a3
a3 15
a3 15
a3 5
.
B.
.
C.
.
D.
.
A.
25
3
5
25
2
Câu 59. Tính
√ mơ đun của số phức z√4biết (1 + 2i)z = 3 + 4i.
A. |z| = 2 5.
B. |z| = 5.
C. |z| = 5.

D. |z| =

Câu 60. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).

B. (0; 2).
C. R.

D. (−∞; 1).


5.

Câu 61. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là



a3 15
a3 6
a3 5
3
A.
.
B. a 6.
C.
.
D.
.
3
3
3
Câu 62. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 20.

C. 12.
D. 8.
Câu 63. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a 6
a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
48
24
8
24
Câu 64. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 12 cạnh, 4 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.

Trang 5/10 Mã đề 1


Câu 65. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 12.
3
x −1
Câu 66. Tính lim
x→1 x − 1
A. 3.
B. −∞.

C. 30.

D. 10.

C. 0.

D. +∞.

Câu 67. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 12.
C. 8.
D. 6.
!4x
!2−x
2
3

Câu 68. Tập các số x thỏa mãn


#
" 3 ! 2
"
!
#
2
2
2
2
B.
; +∞ .
C. − ; +∞ .
D. −∞; .
A. −∞; .
3
5
3
5
mx − 4
Câu 69. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 26.
B. 45.
C. 34.
D. 67.
Câu 70. Khối đa diện loại {3; 5} có tên gọi là gì?

A. Khối tứ diện đều.
B. Khối 12 mặt đều.

C. Khối bát diện đều. D. Khối 20 mặt đều.

Câu 71. [1228d] Cho phương trình
x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 64.
B. Vơ số.
C. 63.
D. 62.

Câu 72.
phức z = ( 2 + 3i)2
√ Xác định phần ảo của số √
A. 6 2.
B. −6 2.
C. −7.
D. 7.
(2 log23

Câu 73. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 3.
B. 2.
C. 1.
D. Vơ số.
0 0 0 0
0

Câu 74.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 3
a 6
A.
.
B.
.
C.
.
D.
.
3
7
2
2
Câu 75. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 20.
C. 3, 55.
D. 24.
!
x+1
Câu 76. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)

x
4035
2017
2016
A.
.
B. 2017.
C.
.
D.
.
2018
2018
2017

Câu 77. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. 5.
B. 25.
C. .
D. 5.
5
Câu 78. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
√ C là

3
a 3

a3 3
a3
A.
.
B.
.
C.
.
D. a3 .
6
2
3
Câu 79. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .
B. 2e2 .
C. −e2 .
D. 2e4 .

Câu 80. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m > .
C. m ≥ .
D. m ≤ .
4
4
4

4
Trang 6/10 Mã đề 1


Câu 81. Khối đa diện đều loại {4; 3} có số đỉnh
A. 10.
B. 6.

C. 8.

D. 4.
!
3n + 2
2
Câu 82. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng
A. 5.
B. 4.
C. 3.
D. 2.
2
2
2
1 + 2 + ··· + n
Câu 83. [3-1133d] Tính lim
n3
2
1

A. .
B. .
C. 0.
D. +∞.
3
3
Câu 84. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Có vơ số.
B. Có một.
C. Khơng có.
D. Có hai.
d = 30◦ , biết S BC là tam giác đều
Câu 85. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.

26
9
13
16
1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
Câu 86. [12210d] Xét các số thực dương x, y thỏa mãn log3
x + 2y
Pmin của P = x√+ y.



9 11 + 19
9 11 − 19
2 11 − 3
18 11 − 29
A. Pmin =
. B. Pmin =
. C. Pmin =
.
D. Pmin =
.
9
9
3
21
Z 2
ln(x + 1)
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
Câu 87. Cho

x2
1
A. 3.
B. 0.
C. −3.
D. 1.
Câu 88. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 3.

B. 4.

C. 2.

D. 1.

Câu 89. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
ab
1
1
.
B. √
.
C. 2
.

D. √
.
A. √
2
a +b
a2 + b2
a2 + b2
2 a2 + b2
Câu 90. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Một khối chóp tam giác, một khối chóp ngữ giác.
B. Hai khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp tứ giác.
D. Hai khối chóp tam giác.
8
Câu 91. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 96.
C. 82.
D. 64.
Trang 7/10 Mã đề 1


Câu 92. [1] Giá trị của biểu thức 9log3 12 bằng
A. 144.
B. 24.

C. 2.

Câu 93. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)

A. 13.
B. 0.
C. 9.

D. 4.
D. Không tồn tại.

Câu 94. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng,
lãi suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó. Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây?
Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền
ra.
A. 212 triệu.
B. 220 triệu.
C. 210 triệu.
D. 216 triệu.
Câu 95. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
Câu 96. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m < 3.
B. m ≥ 3.
C. m > 3.
D. m ≤ 3.
Câu 97. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 6 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 5 mặt.
Câu 98. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng

1
1
A. − .
B. .
C. 2.
2
2
Câu 99. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai mặt.
B. Bốn mặt.
C. Năm mặt.

D. −2.
D. Ba mặt.

1
5

Câu 100. [2] Tập xác định của hàm số y = (x − 1) là
A. D = (1; +∞).
B. D = (−∞; 1).
C. D = R.

D. D = R \ {1}.

Câu 101. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 3.
B. −3.
C. −6.
D. 0.

Câu 102. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 24.
B. 21.
C. 23.
D. 22.
Câu 103. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .
B. 72cm3 .
C. 27cm3 .
D. 64cm3 .
Câu 104. Cho a là số thực dương α, β là các số thực. Mệnh đề nào sau đây sai?
α

C. aαβ = (aα )β .
D. aα+β = aα .aβ .
A. aα bα = (ab)α .
B. β = a β .
a
1
Câu 105. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. −3.
B. .
C. 3.

D. − .
3
3

Câu 106. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
5
5
A. 2; .
B.
;3 .
C. (1; 2).
D. [3; 4).
2
2
Trang 8/10 Mã đề 1


Câu 107. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 3
a3 5
a3 5
A.
.
B.
.

C.
.
D.
.
4
12
12
6
!
1
1
1
+ ··· +
Câu 108. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
5
3
A. .
B. +∞.
C. 2.
D. .
2
2
Câu 109. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
B. Cả ba đáp án trên.

C. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
D. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

2n2 − 1
3n6 + n4
2
A. 0.
B. .
C. 1.
3
Câu 111. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.
B. 3.
C. 2.
Câu 110. Tính lim

D. 2.
D. 1.

Câu 112. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 4).
B. (2; 4; 3).
C. (2; 4; 6).
D. (1; 3; 2).
Câu 113. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. 13.
C. log2 2020.
D. log2 13.
x+3
nghịch biến trên khoảng
Câu 114. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =

x−m
(0; +∞)?
A. 1.
B. 2.
C. Vô số.
D. 3.


Câu 115. Tìm giá trị lớn nhất của
√ hàm số y = x + 3 + 6 −
√x

A. 3.
B. 3 2.
C. 2 + 3.
D. 2 3.
Z 3
x
a
a
Câu 116. Cho I =
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá

d
d
0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = −2.
B. P = 28.
C. P = 4.

D. P = 16.


2



2

Câu 117. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x
3
A. 0 ≤ m ≤ .
B. m ≥ 0.
C. 0 < m ≤
4
Câu 118. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 8.
C. 30.

− 3m + 4 = 0 có nghiệm
3
9
.
D. 0 ≤ m ≤ .
4
4
D. 12.

Câu 119.

√ Thể tích của tứ diện đều
√cạnh bằng a


3
3
a 2
a3 2
a3 2
a 2
A.
.
B.
.
C.
.
D.
.
12
2
4
6
Câu 120. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M,
√ N, P bằng



20 3

14 3
A.
.
B. 6 3.
C. 8 3.
D.
.
3
3
Trang 9/10 Mã đề 1


Câu 121. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất

√ của hàm số. Khi đó tổng M + m

A. 7 3.
B. 16.
C. 8 3.
D. 8 2.
3
2
x
Câu 122. [2] Tìm m để giá trị lớn nhất
√ của hàm số y = 2x + (m√ + 1)2 trên [0; 1] bằng 8
A. m = ±1.
B. m = ± 3.
C. m = ± 2.
D. m = ±3.


Câu 123. Dãy!số nào có giới hạn bằng 0?
n
−2
A. un =
.
B. un = n2 − 4n.
3

!n
6
C. un =
.
5

n3 − 3n
D. un =
.
n+1

1
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
B. xy = e − 1.
C. xy0 = −ey + 1.
D. xy0 = −ey − 1.

Câu 124. [3-12217d] Cho hàm số y = ln

A. xy0 = ey + 1.

3

Câu 125. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e5 .
B. e.
C. e3 .
D. e2 .
Câu 126. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m , 0.
C. m = 0.
4x + 1
Câu 127. [1] Tính lim
bằng?
x→−∞ x + 1
A. 2.
B. −1.
C. −4.

D. m > 0.

D. 4.
un
Câu 128. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. −∞.
B. 1.
C. 0.

D. +∞.
Câu 129. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (−∞; 0) và (2; +∞). B. (0; +∞).
C. (−∞; 2).

Câu 130. Thể tích của khối lập phương

cạnh
bằng
a
2

3

2a 2
A. V = 2a3 .
B.
.
C. V = a3 2.
3

D. (0; 2).

D. 2a3 2.

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1



ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
3.

2.
B

B

4. A

5. A

6.

7.

D

9.

D

8.

C
B


11. A

12. A

13.

14. A

15.

D

17.

D

16.

D

18.

B

19. A

20.

B


21.

22. A
24.

D

26.

C

D

25.

D

27.

D

B

29. A

30.

B

31.


32.

B

33.
35.
D

36.
C

39.

40.

C

41. A

42. A

43.

49.

B

C
B

D
B

51. A

52.

C

53.

54.

C

55. A

C

58.

57. A
B

61.

60.
C

C


64.

65.

B

66. A

67.

B

68.
70.
1

B
C

B

C

D

62.

63.


69.

B

47.

50. A

59.

D

45. A

B

46. A
48.

B

37. A

38.

44.

B

23.


28.

34. A

C

C
D


71.
73.

D

72. A
74. A

B

75. A
77.

78.

B

79.


C

80.

81.

C

82.

83.

C

86.

87.

C

88. A

B
B

96.
D

99.


D

C
C

B
D

98.
100. A
102.

B

103.

C

105.

D

B

106.

B

C


108.

109.

C

110. A

111. A

D

104.

107.

C

112.

113.

C

114.

D

D


116.

B

117. A

118. A

119. A

120.

121.

D

94. A

97.

115.

B

92. A

95. A

101.


D

90.

91. A
93.

B

84.

B

85.
89.

C

76.

B

C
B

122.

C

123. A


124.

B

125. A

126.

B

127.

D

128.
130.

129. A

2

C
D



×