Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 10 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
√
Câu 1. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 62.
B. 63.
C. 64.
D. Vô số.
Câu 2. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B thuộc
∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và AC = BD = a.
Khoảng√cách từ A đến mặt phẳng (BCD) bằng
√
√
√
a 2
a 2
C.
A.
.
B. 2a 2.
.
D. a 2.
2
4
3
Câu 3. Hàm số y = −x + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (−1; 1).
B. (−∞; 1).
C. (1; +∞).
D. (−∞; −1).
Câu 4. [1] Đạo hàm của làm số y = log x là
1
1
1
ln 10
A. y0 = .
B. y0 =
.
C.
.
D. y0 =
.
x
x ln 10
10 ln x
x
Câu 5. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi
suất 2% trên quý. Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước đó.
Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết
rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng khơng thay đổi và người đó khơng rút tiền ra.
A. 212 triệu.
B. 210 triệu.
C. 220 triệu.
D. 216 triệu.
3a
, hình chiếu vng góc
Câu 6. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
2
của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt √
phẳng (S BD) bằng
2a
a
a
a 2
A.
.
B. .
C. .
D.
.
3
3
4
3
!
!
!
1
2
2016
4x
. Tính tổng T = f
Câu 7. [3] Cho hàm số f (x) = x
+f
+ ··· + f
4 +2
2017
2017
2017
2016
A. T = 2016.
B. T =
.
C. T = 1008.
D. T = 2017.
2017
Câu 8. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 3, 55.
B. 20.
C. 15, 36.
D. 24.
Câu 9. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số cạnh của khối chóp bằng 2n.
C. Số mặt của khối chóp bằng 2n+1.
D. Số đỉnh của khối chóp bằng 2n + 1.
Câu 10. [3] Biết rằng giá trị lớn nhất của hàm số y =
ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 24.
C. S = 135.
D. S = 32.
Câu 11. Khối lập phương thuộc loại
A. {3; 4}.
B. {3; 3}.
C. {4; 3}.
D. {5; 3}.
Trang 1/10 Mã đề 1
2
Câu 12. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1
1
1
B.
.
C. √ .
A. 2 .
3
e
2e
2 e
D.
2
.
e3
x
Câu 13.
√ Tính diện tích hình phẳng giới hạn bởi các đường y = xe , y = 0, x = 1.
3
3
1
A.
.
B. 1.
C. .
D. .
2
2
2
Câu 14. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Cả hai đều sai.
C. Chỉ có (I) đúng.
D. Chỉ có (II) đúng.
Câu 15. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính qng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 16 m.
C. 24 m.
D. 12 m.
Câu 16. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = 0.
B. m = −3.
C. m = −1.
Câu 17. Phát biểu nào sau đây là sai?
1
A. lim √ = 0.
n
C. lim un = c (Với un = c là hằng số).
Câu 18. Hàm số y =
A. x = 1.
x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 0.
D. m = −2.
1
= 0 với k > 1.
nk
D. lim qn = 1 với |q| > 1.
B. lim
C. x = 2.
D. x = 3.
[ = 60◦ , S O
Câu 19. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S BC) bằng
√
√
a 57
a 57
2a 57
A.
D.
.
B.
.
C. a 57.
.
19
19
17
q
2
Câu 20. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [−1; 0].
B. m ∈ [0; 4].
C. m ∈ [0; 2].
D. m ∈ [0; 1].
!4x
!2−x
3
2
≤
là
Câu 21. Tập các số x thỏa mãn
#
" 3
! 2
#
"
!
2
2
2
2
A. −∞; .
B. − ; +∞ .
C. −∞; .
D.
; +∞ .
5
3
3
5
√
x2 + 3x + 5
Câu 22. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. − .
B. 1.
C. .
D. 0.
4
4
Câu 23. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
67
A. −7.
B. −2.
C. −4.
D.
.
27
Câu 24. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
Trang 2/10 Mã đề 1
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 2.
B. 1.
C. 0.
Câu 25. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. [6, 5; +∞).
C. (4; +∞).
D. 3.
D. (−∞; 6, 5).
Câu 26. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(−4; 8).
C. A(−4; −8)(.
D. A(4; 8).
Câu 27. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
A. a 3.
.
C. a 6.
B.
D. 2a 6.
2
Câu 28. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là 4.
B. Phần thực là 3, phần ảo là −4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là 3, phần ảo là 4.
Câu 29. Khối đa diện đều loại {3; 5} có số mặt
A. 20.
B. 8.
C. 30.
Câu 30. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
1
.
B. f 0 (0) = 1.
C. f 0 (0) = ln 10.
A. f 0 (0) =
ln 10
√
√
4n2 + 1 − n + 2
Câu 31. Tính lim
bằng
2n − 3
3
A. 1.
B. 2.
C. .
2
D. 12.
D. f 0 (0) = 10.
D. +∞.
d = 60◦ . Đường chéo
Câu 32. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vuông tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0
là
√
√
√
3
3
3
√
2a
6
4a
6
a
6
A. a3 6.
.
C.
.
D.
.
B.
3
3
3
Câu 33. Cho hàm số y = x3 − 2x2 + x + 1.
! Mệnh đề nào dưới đây đúng?
1
A. Hàm số đồng biến trên khoảng ; 1 .
B. Hàm số nghịch biến trên khoảng (1; +∞).
3
!
!
1
1
C. Hàm số nghịch biến trên khoảng −∞; .
D. Hàm số nghịch biến trên khoảng ; 1 .
3
3
Câu 34. Tính lim
x→+∞
A. −3.
x−2
x+3
B. 1.
C. 2.
Câu 35. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 1.
C. 2.
Câu 36. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 3ac
3b + 3ac
3b + 2ac
.
B.
.
C.
.
A.
c+1
c+2
c+2
2
D. − .
3
D. 0.
D.
3b + 2ac
.
c+3
2
Câu 37. [2] Tìm m để giá trị nhỏ nhất√của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
A. m = ±3.
B. m = ± 3.
C. m = ± 2.
D. m = ±1.
Trang 3/10 Mã đề 1
x−3
Câu 38. [1] Tính lim
bằng?
x→3 x + 3
A. −∞.
B. 0.
C. +∞.
D. 1.
mx − 4
Câu 39. Tìm m để hàm số y =
đạt giá trị lớn nhất bằng 5 trên [−2; 6]
x+m
A. 45.
B. 67.
C. 26.
D. 34.
1
. Trong các khẳng định sau đây, khẳng định nào đúng?
Câu 40. [3-12217d] Cho hàm số y = ln
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = e + 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.
Câu 41. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = −18.
B. y(−2) = 6.
C. y(−2) = 2.
D. y(−2) = 22.
√
Câu 42. √Xác định phần ảo của số phức z = ( 2 + 3i)2
√
B. −7.
C. 7.
D. 6 2.
A. −6 2.
2n − 3
Câu 43. Tính lim 2
bằng
2n + 3n + 1
A. +∞.
B. −∞.
C. 1.
D. 0.
Câu 44. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
D. .
A. 9.
B. 6.
C. .
2
2
Câu 45. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 2.
C. 0, 4.
D. 0, 3.
Câu 46. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 8 mặt.
C. 6 mặt.
D. 10 mặt.
Câu 47. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
.
B. log2 a = − loga 2.
C. log2 a =
.
D. log2 a = loga 2.
A. log2 a =
log2 a
loga 2
Câu 48. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦√. Thể tích khối chóp S .ABCD
√ là
√
3
3
3
3
4a 3
8a 3
a 3
8a 3
.
B.
.
C.
.
D.
.
A.
9
3
9
9
Câu 49. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 4.
C. ln 10.
D. ln 14.
3
2
Câu 50. Giá√trị cực đại của hàm số y =
√ x − 3x − 3x + 2
√
A. −3 − 4 2.
B. −3 + 4 2.
C. 3 + 4 2.
√
D. 3 − 4 2.
Câu 51. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Hai khối chóp tam giác.
Câu 52. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
ab
1
1
A. √
.
B. 2
.
C. √
.
D. √
.
2
a +b
a2 + b2
2 a2 + b2
a2 + b2
Câu 53. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
Trang 4/10 Mã đề 1
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (II).
B. (II) và (III).
C. Cả ba mệnh đề.
D. (I) và (III).
Câu 54. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2
A. 6.
B. 2.
C. −1.
3
Z
6
3x + 1
. Tính
1
f (x)dx.
0
D. 4.
Câu 55. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.
A. 0, 7%.
B. 0, 5%.
C. 0, 6%.
D. 0, 8%.
Câu 56.√Biểu thức nào sau đây √
khơng có nghĩa
−3
0
A. (− 2) .
B.
−1.
C. (−1)−1 .
D. 0−1 .
Câu 57.
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh
Z đề nàoZsai?
( f (x) − g(x))dx =
A.
Z
C.
( f (x) + g(x))dx =
f (x)dx −
Z
f (x)dx +
g(x)dx.
B.
Z
Z
g(x)dx.
D.
f (x)g(x)dx =
f (x)dx g(x)dx.
Z
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
Câu 58. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)
hợp với đáy
một góc 60◦ . Thể tích√khối chóp S .ABCD là
√
√
√
a3 3
a3 3
2a3 3
3
.
B.
.
C. a 3.
D.
.
A.
3
3
6
Câu 59. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√
√ là
√
√ Thể tích khối chóp S 3.ABC
3
a 3
a3 3
a3 2
a 3
.
B.
.
C.
.
D.
.
A.
4
12
6
12
Câu 60. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
D. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
Câu 61. Cho hai đường thẳng d và d0 cắt nhau. Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0 ?
A. Khơng có.
B. Có hai.
C. Có vơ số.
D. Có một.
Câu 62. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (1; 3; 2).
B. (2; 4; 3).
C. (2; 4; 6).
D. (2; 4; 4).
Câu 63. Khối đa diện đều loại {4; 3} có số mặt
A. 8.
B. 10.
C. 12.
D. 6.
d = 30◦ , biết S BC là tam giác đều
Câu 64. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
.
B.
.
C.
.
D.
.
A.
16
26
13
9
Trang 5/10 Mã đề 1
π π
Câu 65. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 3.
C. 1.
D. 7.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 66. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng
A. 5.
B. 2.
C. 3.
D. 4.
un
Câu 67. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. +∞.
B. −∞.
C. 0.
D. 1.
Câu 68. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√
√
a3 5
a3 3
a3 5
a3 5
.
B.
.
C.
.
D.
.
A.
4
12
12
6
Câu 69. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (−∞; 1).
B. R.
C. (0; 2).
D. (2; +∞).
Câu 70. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 18 lần.
B. Tăng gấp 9 lần.
C. Tăng gấp 27 lần.
D. Tăng gấp 3 lần.
Câu 71. Cho hình chóp S .ABCD có √
đáy ABCD là hình chữ nhật AD = 2a, AB = a. Gọi H là trung điểm
S .ABCD là
của AD, biết
a 5. Thể tích khối chóp √
√ S H ⊥ (ABCD), S A =
2a3
2a3 3
4a3
4a3 3
.
B.
.
C.
.
D.
.
A.
3
3
3
3
Câu 72. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 387 m.
B. 27 m.
C. 1587 m.
D. 25 m.
Câu 73. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √
√
a3 3
a3 3
a3 3
a3
A.
.
B.
.
C.
.
D.
.
4
4
8
12
√
Câu 74. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
A. − .
B. 3.
C. .
D. −3.
3
3
Câu 75. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 50, 7 triệu đồng.
B. 70, 128 triệu đồng. C. 20, 128 triệu đồng. D. 3, 5 triệu đồng.
Câu 76. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.
B. Khối lập phương.
C. Khối lăng trụ tam giác.
D. Khối tứ diện.
Câu 77. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m < 3.
C. m ≤ 3.
D. m > 3.
Câu 78. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của
nó
A. Giảm đi n lần.
B. Tăng lên (n − 1) lần. C. Không thay đổi.
D. Tăng lên n lần.
Trang 6/10 Mã đề 1
1
Câu 79. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 0 < m ≤ 1.
B. 0 ≤ m ≤ 1.
C. 2 ≤ m ≤ 3.
D. 2 < m ≤ 3.
Câu 80.
√ Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18.
A. 3 3.
B. 27.
C. 9.
D. 8.
Câu 81. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√
√
√
√ thẳng BD bằng
abc b2 + c2
a b2 + c2
b a2 + c2
c a2 + b2
.
B. √
.
C. √
.
D. √
.
A. √
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
!
x+1
Câu 82. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
4035
2016
2017
.
B.
.
C.
.
D. 2017.
A.
2018
2018
2017
Câu 83. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
A. 2e.
B. 2e + 1.
C. 3.
D. .
e
2
Câu 84. Tổng diện tích các mặt của một khối lập phương bằng 54cm .Thể tích của khối lập phương đó
là:
A. 27cm3 .
B. 46cm3 .
C. 64cm3 .
D. 72cm3 .
Câu 85. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 23.
B. 21.
C. 24.
D. 22.
Câu 86. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách giữa hai đường
thẳng BB0 và AC 0 bằng
ab
ab
1
1
.
B. √
.
C. 2
.
A. √
.
D. √
2
a +b
2 a2 + b2
a2 + b2
a2 + b2
Câu 87. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
B. −e.
C. − .
D. − 2 .
2e
e
e
2
Câu 88. [1224d] Tìm tham số thực m để phương trình log3 x + log3 x + m = 0 có nghiệm
1
1
1
1
B. m < .
C. m ≤ .
D. m > .
A. m ≥ .
4
4
4
4
0 0 0
Câu 89. [4-1214h] Cho khối lăng trụ ABC.A B C , khoảng cách từ
C đến đường thẳng BB0 bằng 2, khoảng
√
cách từ A đến các đường thẳng BB0 và CC 0 lần lượt bằng
√ 1 và 3, hình chiếu vng góc của A lên mặt
2 3
phẳng (A0 B0C 0 ) là trung điểm M của B0C 0 và A0 M =
. Thể tích khối lăng trụ đã cho bằng
3 √
√
2 3
A. 2.
B. 1.
C.
.
D. 3.
3
Câu 90. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Trục ảo.
D. Trục thực.
Câu 91. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là
√
3
3
√
a 5
a 6
a3 15
A.
.
B.
.
C.
.
D. a3 6.
3
3
3
Trang 7/10 Mã đề 1
ln x p 2
1
Câu 92. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
8
1
1
8
A. .
B. .
C. .
D. .
9
9
3
3
!
1
1
1
Câu 93. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 2.
B. 0.
C. 1.
D. .
2
tan x + m
Câu 94. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
nghịch biến trên khoảng
m tan x + 1
π
0; .
4
A. [0; +∞).
B. (1; +∞).
C. (−∞; 0] ∪ (1; +∞). D. (−∞; −1) ∪ (1; +∞).
Câu 95. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m = 0.
C. m , 0.
D. m > 0.
π
Câu 96. Cho hàm số y = a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = , x = π. Tính giá
3
√
trị của biểu thức T = a + b 3.
√
√
A. T = 4.
B. T = 3 3 + 1.
C. T = 2 3.
D. T = 2.
Câu 97. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. lim+ f (x) = lim− f (x) = +∞.
x→a
x→a
x→a
x→a
D. lim f (x) = f (a).
C. f (x) có giới hạn hữu hạn khi x → a.
x→a
Câu 98. [2] Cho hàm số f (x) = ln(x + 1). Giá trị f (1) bằng
ln 2
A. 2.
B.
.
C. 1.
2
4
0
D.
1
.
2
Câu 99. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3 − mx2 + 3x + 4 đồng biến trên R.
A. m ≤ 3.
B. −3 ≤ m ≤ 3.
C. m ≥ 3.
D. −2 ≤ m ≤ 2.
cos n + sin n
Câu 100. Tính lim
n2 + 1
A. 1.
B. +∞.
C. −∞.
D. 0.
Câu 101. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e−2 + 2; m = 1.
C. M = e−2 + 1; m = 1.
D. M = e2 − 2; m = e−2 + 2.
Câu 102. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. 2020.
B. 13.
C. log2 2020.
D. log2 13.
Câu 103. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.
B. Khơng có câu nào C. Câu (I) sai.
sai.
Câu 104. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {1}.
B. D = R.
C. D = R \ {0}.
D. Câu (II) sai.
D. D = (0; +∞).
Trang 8/10 Mã đề 1
1
Câu 105. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. (−∞; −2] ∪ [−1; +∞). C. (−∞; −2) ∪ (−1; +∞). D. −2 < m < −1.
Câu 106. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n2 lần.
C. 2n3 lần.
D. n3 lần.
[ = 60◦ , S O
Câu 107. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ BC) bằng
√ với mặt đáy và S O = a.√Khoảng cách từ A đến (S
√
2a 57
a 57
a 57
.
B.
.
C.
.
D. a 57.
A.
17
19
19
Câu 108. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|
√
√
√
√
12 17
A. 5.
B. 68.
C.
.
D. 34.
17
Câu 109. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)
A. 9.
B. 13.
C. Không tồn tại.
D. 0.
8
Câu 110. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 82.
C. 96.
D. 64.
Câu 111. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.
B. Một mặt.
C. Bốn mặt.
D. Hai mặt.
√
Câu 112. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh
bên S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a 58
3a
a 38
3a 38
.
B.
.
C.
.
D.
.
A.
29
29
29
29
Câu 113. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 6 đỉnh, 6 cạnh, 6 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 9 cạnh, 6 mặt.
log 2x
Câu 114. [3-1229d] Đạo hàm của hàm số y =
là
x2
1
1 − 2 log 2x
1 − 2 ln 2x
1 − 4 ln 2x
0
0
A. y0 = 3
.
B. y0 =
.
C.
y
=
.
D.
y
=
.
2x ln 10
x3
x3 ln 10
2x3 ln 10
Câu 115. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đơi thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 6 lần.
B. Tăng gấp đôi.
C. Tăng gấp 4 lần.
D. Tăng gấp 8 lần.
Câu 116. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
!vn
un
B. Nếu lim un = a > 0 và lim vn = 0 thì lim
= +∞.
vn
!
un
C. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
D. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
Câu 117. Khối đa diện đều loại {4; 3} có số cạnh
A. 12.
B. 30.
C. 10.
D. 20.
Trang 9/10 Mã đề 1
Câu 118. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
.
B.
.
C. a3 .
D.
.
A.
6
12
24
Câu 119. Khối đa diện đều loại {5; 3} có số đỉnh
A. 8.
B. 20.
C. 30.
D. 12.
√
√
Câu 120. Phần thực
√ và phần ảo của số√phức z = 2 − 1 − 3i lần lượt√l
√
A. Phần thực là 2 −√1, phần ảo là √
3.
B. Phần thực là √2 − 1, phần ảo là −√ 3.
C. Phần thực là 1 − 2, phần ảo là − 3.
D. Phần thực là 2, phần ảo là 1 − 3.
Câu 121. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
Câu 122. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ơng ta muốn
hồn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 20 triệu đồng.
C. 2, 25 triệu đồng.
D. 2, 22 triệu đồng.
Câu 123. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. 2.
B. −4.
C. −2.
Câu 124. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 5 mặt.
2n + 1
Câu 125. Tính giới hạn lim
3n + 2
2
3
B. .
C. 0.
A. .
2
3
Câu 126. Khối đa diện đều loại {3; 4} có số cạnh
A. 10.
B. 12.
C. 8.
D. 4.
D. 4 mặt.
D.
1
.
2
D. 6.
Câu 127. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là 4, phần ảo là 1.
C. Phần thực là 4, phần ảo là −1.
D. Phần thực là −1, phần ảo là 4.
2n2 − 1
Câu 128. Tính lim 6
3n + n4
2
A. .
B. 1.
C. 0.
D. 2.
3
Câu 129. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C. F(x) = G(x) trên khoảng (a; b).
D. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
Câu 130. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và
√ (A C D) bằng
√
√
√
2a 3
a 3
a 3
.
B. a 3.
C.
.
D.
.
A.
2
2
3
- - - - - - - - - - HẾT- - - - - - - - - Trang 10/10 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A
2. A
3. A
4.
5. A
6. A
C
7.
9.
C
8.
10.
B
11.
B
D
12. A
C
13.
B
14.
D
15.
B
16.
D
17.
D
18. A
19. A
20. A
21.
B
22. A
23.
B
24. A
26.
25. A
27.
D
28. A
C
29. A
30.
31. A
32. A
C
33.
D
34.
B
35.
D
36.
B
37.
D
38.
B
39.
D
40.
D
42.
D
D
41. A
43.
D
44.
45.
D
46.
47.
51.
48.
C
49.
C
D
50.
D
B
52. A
B
53. A
54.
D
55. A
56.
D
57.
B
58.
59.
B
60. A
61.
B
62.
C
64.
C
63.
D
65.
C
66.
67.
C
68.
1
B
D
B
69.
70.
C
D
71.
72.
73.
C
74.
75.
C
76.
77. A
D
C
82. A
83.
C
84. A
D
85.
86.
87. A
88.
89. A
90.
B
C
94.
95.
C
96. A
97.
D
B
C
B
B
98. A
B
101. A
B
100.
D
102.
D
104.
B
D
106.
105. A
107.
D
92. A
93.
103.
C
80. A
81.
99.
B
78. A
79.
91.
C
B
108.
109.
D
111.
C
110. A
C
112.
113. A
B
114.
115.
D
117. A
C
116.
B
118.
B
B
119.
B
120.
121.
B
122.
D
124.
D
123.
125.
C
B
127.
129.
126.
128.
C
130.
B
2
B
C
D