Tải bản đầy đủ (.pdf) (12 trang)

Đề ôn toán thpt (740)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (150.76 KB, 12 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1
2

Câu 1. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log2 3.
B. 3 − log2 3.
C. 2 − log2 3.
x+1
Câu 2. Tính lim
bằng
x→+∞ 4x + 3
1
A. .
B. 1.
C. 3.
4
Z 3
a
x
dx = + b ln 2 + c ln d, biết a, b, c, d ∈ Z và
Câu 3. Cho I =

d
0 4+2 x+1


P = a + b + c + d bằng?
A. P = 28.
B. P = 16.
C. P = 4.

D. 1 − log3 2.

D.

1
.
3

a
là phân số tối giản. Giá trị
d
D. P = −2.

Câu 4. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có ngun hàm trên D.
(III) Hai ngun hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (I) sai.

B. Câu (III) sai.

C. Khơng có câu nào D. Câu (II) sai.
sai.


Câu 5. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có một hoặc hai.
B. Khơng có.
C. Có một.
D. Có hai.
Câu 6. [1] Cho a > 0, a , 1. Giá trị của biểu thức log a1 a2 bằng
1
1
A. .
B. 2.
C. − .
2
2

D. −2.

Câu 7. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≤ .
B. m < .
C. m > .
D. m ≥ .
4
4
4
4

! x3 −3mx2 +m
1
nghịch biến trên khoảng
Câu 8. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) =
π
(−∞; +∞)
A. m ∈ R.
B. m , 0.
C. m = 0.
D. m ∈ (0; +∞).
Câu 9. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S AB cân tại S và nằm trong mặt phẳng vng góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC)
một góc 45◦ . Thể tích khối chóp S .ABC là
a3
a3
a3
A. a3 .
B.
.
C.
.
D.
.
6
24
12
Câu 10. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc√với đáy và S C = a 3. √
Thể tích khối chóp S .ABC√là


3
3
2a 6
a 3
a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
9
4
12
2
Trang 1/10 Mã đề 1


log(mx)
= 2 có nghiệm thực duy nhất
log(x + 1)
C. m ≤ 0.
D. m < 0.

4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
C. 2 nghiệm.

D. 1 nghiệm.

Câu 11. [1226d] Tìm tham số thực m để phương trình
A. m < 0 ∨ m = 4.

B. m < 0 ∨ m > 4.

Câu 12. [2] Phương trình log4 (x + 1)2 + 2 = log √2
A. 3 nghiệm.
B. Vơ nghiệm.

Câu 13. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD), S D = a 5. Thể tích khối
√ chóp S .ABCD là


3

a
a3 6
a3 5
15
3
A. a 6.
B.
.
C.
.
D.
.

3
3
3
x2
Câu 14. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = , m = 0.
B. M = e, m = 0.
C. M = e, m = 1.
D. M = e, m = .
e
e
Câu 15. Cho
Z hai hàm yZ = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
f (x)dx =

A. Nếu
Z

g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
0
C. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f (x)dx =
g0 (x)dx.
Z
Z

D. Nếu
f (x)dx =
g(x)dx thì f (x) , g(x), ∀x ∈ R.
B. Nếu

f 0 (x)dx =

g(x)dx thì f (x) = g(x), ∀x ∈ R.

Z

9x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9x + 3
1
A. −1.
B. 1.
C. .
D. 2.
2
Câu 17. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
B. m > − .
C. m ≤ 0.
D. m ≥ 0.
A. − < m < 0.
4
4

Câu 18. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vô số.
B. 3.
C. 2.
D. 1.
!
5 − 12x
Câu 19. [2] Phương trình log x 4 log2
= 2 có bao nhiêu nghiệm thực?
12x − 8
A. Vơ nghiệm.
B. 3.
C. 2.
D. 1.

Câu 20. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √


a3 3
a3 3
a3
3
B.
A. a 3.
.
C.
.
D.

.
12
3
4
7n2 − 2n3 + 1
Câu 21. Tính lim 3
3n + 2n2 + 1
2
7
A. 0.
B. 1.
C. - .
D. .
3
3
Câu 22. Xét hai khẳng đinh sau
Câu 16. [2-c] Cho hàm số f (x) =

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trang 2/10 Mã đề 1


Trong hai khẳng định trên
A. Cả hai đều đúng.
B. Chỉ có (II) đúng.

C. Cả hai đều sai.

Câu 23. [1] Cho a > 0, a , 1 .Giá trị của biểu thức a


log √a

D. Chỉ có (I) đúng.

5

bằng
1
A. 5.
B. 25.
C. .
D.
5
Câu 24. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
C. − 2 .
D.
A. −e.
B. − .
2e
e
Câu 25. Cho z là√nghiệm của phương trình x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z
−1 + i 3
−1 − i 3
A. P =
.
B. P = 2.
C. P =

.
D.
2
2
Câu 26. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 4 đỉnh, 8 cạnh, 4 mặt. C. 3 đỉnh, 3 cạnh, 3 mặt. D.


5.
1
− .
e
P = 2i.

4 đỉnh, 6 cạnh, 4 mặt.
d = 300 .
Câu 27. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vuông tại A. BC = 2a, ABC
0
Độ dài cạnh bên
√ CC = 3a. Thể tích V 3của
√ khối lăng trụ đã cho.
3

a 3
3a 3
A. V =
.
B. V =
.
C. V = 6a3 .

D. V = 3a3 3.
2
2
Câu 28. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d nằm trên P.
B. d song song với (P).
C. d nằm trên P hoặc d ⊥ P.
D. d ⊥ P.
Câu 29. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Một mặt.
B. Hai mặt.
C. Bốn mặt.
√3
4
Câu 30. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
7
2
A. a 3 .
B. a 3 .
C. a 3 .

D. Ba mặt.
5

D. a 8 .

Câu 31. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1

1
1
B. m < .
C. m ≤ .
D. m > .
A. m ≥ .
4
4
4
4
Câu 32. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối tứ diện đều.
B. Khối lập phương.
C. Khối bát diện đều. D. Khối 12 mặt đều.
8
Câu 33. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 96.
B. 81.
C. 64.
D. 82.
Câu 34. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = 21.
B. P = −21.
C. P = −10.
D. P = 10.
2

Câu 35. [2-c] Giá trị lớn nhất của hàm số y = xe−2x trên đoạn [1; 2] là
1

1
1
B.
.
C. √ .
A. 2 .
3
e
2e
2 e

D.

2
.
e3

Câu 36.
đề nào sai? Z
Z Cho hàm số f (x),Zg(x) liên tụcZtrên R. Trong cácZmệnh đề sau, mệnh Z
A.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
B.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
Z
Z
Z
Z

Z
C.
f (x)g(x)dx =
f (x)dx g(x)dx.
D.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
x−3 x−2 x−1
x
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. (2; +∞).
C. [2; +∞).
D. (−∞; 2].
Câu 37. [4-1213d] Cho hai hàm số y =

Trang 3/10 Mã đề 1


x2 − 12x + 35
Câu 38. Tính lim
x→5

25 − 5x
2
2
A. − .
B. +∞.
C. .
D. −∞.
5
5
Câu 39. [2-1223d] Tổng các nghiệm của phương trình log3 (7 − 3 x ) = 2 − x bằng
A. 1.
B. 2.
C. 7.
D. 3.
Câu 40. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
.
B. a 6.
C.
.
D.
.
A.
2

3
6

Câu 41. Cho khối chóp tam giác đều S .ABC có cạnh đáy bằng a 2. Góc giữa cạnh bên và mặt phẳng đáy
là 300 . Thể
theo a.
√ tích khối chóp S .ABC3 √


3
a 6
a 6
a3 2
a3 6
A.
.
B.
.
C.
.
D.
.
6
18
6
36
Câu 42. Tính mơ đun của số phức z√biết (1 + 2i)z2 = 3 + 4i. √
√4
C. |z| = 2 5.
D. |z| = 5.

A. |z| = 5.
B. |z| = 5.
Câu 43. Dãy số nào sau đây có giới hạn là 0?
1 − 2n
n2 + n + 1
A. un =
.
B.
u
=
.
n
5n + n2
(n + 1)2

C. un =

n2 − 3n
.
n2

D. un =

n2 − 2
.
5n − 3n2

Câu 44.
đề nào sau đây
Z [1233d-2] Mệnh Z

Z sai?
[ f (x) + g(x)]dx =

A.

f (x)dx +

g(x)dx, với mọi f (x), g(x) liên tục trên R.

Z

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
C.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
Z
Z
Z
D.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
B.

[ = 60◦ , S O
Câu 45. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ với mặt đáy và S O = a.
√ Khoảng cách từ O đến (S

√ BC) bằng

2a 57
a 57
a 57
A.
.
B.
.
C.
.
D. a 57.
19
19
17
ln x p 2
1
Câu 46. Gọi F(x) là một nguyên hàm của hàm y =
ln x + 1 mà F(1) = . Giá trị của F 2 (e) là:
x
3
1
1
8
8
A. .
B. .
C. .
D. .
3

9
9
3
Câu 47. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim+ f (x) = f (b).
B. lim− f (x) = f (a) và lim− f (x) = f (b).
x→a
x→a
x→b
x→b
C. lim+ f (x) = f (a) và lim− f (x) = f (b).
D. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b

Câu 48. Tính lim

x→+∞

x→a

x→b

x−2
x+3

2
C. − .

D. −3.
3
Câu 49. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể
√ tích khối chóp S .ABCD là
3
10a 3
A. 10a3 .
B.
.
C. 20a3 .
D. 40a3 .
3
A. 2.

B. 1.

Trang 4/10 Mã đề 1


Câu 50. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 0.

B. 3.

C. 1.


D. 2.

x2 − 9
Câu 51. Tính lim
x→3 x − 3
A. 6.
B. +∞.

C. 3.

D. −3.

Câu 52. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (0; +∞).

C. (−∞; 2).

D. (−∞; 0) và (2; +∞).

Câu 53. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. 7, 2.
C. −7, 2.

D. 72.

Câu 54. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1


A. 9.

B. 5.

C. 7.

D. 0.

Câu 55. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó,√các kích
√ thước của hình hộp là
C. 2, 4, 8.
D. 8, 16, 32.
A. 6, 12, 24.
B. 2 3, 4 3, 38.
Câu 56. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 12.
B. ln 10.
C. ln 4.
D. ln 14.
2n + 1
Câu 57. Tính giới hạn lim
3n + 2
1
3
2
B. 0.
C. .
D. .
A. .

3
2
2
Câu 58. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng S B và AD bằng



a 2
a 2
A.
.
B.
.
C. a 2.
D. a 3.
3
2
q
2
Câu 59. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 4].
B. m ∈ [−1; 0].
C. m ∈ [0; 2].
D. m ∈ [0; 1].
Câu 60. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.

B. 0.
C. 2.

D. 1.

Câu 61. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5
3
−2
−1
x y−2 z−3
x y z−1
A. =
=
.
B. = =
.
2
3
−1

1 1
1
x−2 y−2 z−3
x−2 y+2 z−3
C.
=
=
.
D.
=
=
.
2
3
4
2
2
2

Câu 62. [1] Biết log6 a = 2 thì log6 a bằng
A. 36.
B. 4.
C. 108.
D. 6.
Trang 5/10 Mã đề 1


Câu 63. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD


√ = a. Khoảng cách từ A đến mặt phẳng (BCD) bằng


a 2
a 2
C.
.
B. a 2.
.
D. 2a 2.
A.
2
4
2n − 3
Câu 64. Tính lim 2
bằng
2n + 3n + 1
A. 0.
B. 1.
C. +∞.
D. −∞.
Câu 65. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất khơng thay đổi?
A. 102.016.000.
B. 102.016.000.
C. 102.423.000.
D. 102.424.000.

Câu 66. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
B.
; +∞ .
C. −∞; .
A. − ; +∞ .
2
2
2
n−1
Câu 67. Tính lim 2
n +2
A. 0.
B. 2.
C. 3.

!
1
D. −∞; − .
2

D. 1.

Câu 68. [2] Tổng các nghiệm của phương trình log4 (3.2 x − 1) = x − 1 là
A. 2.
B. 1.

C. 3.
D. 5.
1 + 2 + ··· + n
. Mệnh đề nào sau đây đúng?
Câu 69. [3-1132d] Cho dãy số (un ) với un =
n2 + 1
1
A. lim un = 1.
B. lim un = .
2
C. lim un = 0.
D. Dãy số un khơng có giới hạn khi n → +∞.
Câu 70. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. 3n3 lần.
C. n2 lần.
D. n lần.
Câu 71. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = x2 − 2 ln x trên [e−1 ; e] là
A. M = e−2 − 2; m = 1.
B. M = e2 − 2; m = e−2 + 2.
−2
C. M = e + 2; m = 1.
D. M = e−2 + 1; m = 1.
Câu 72. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là

4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
6
12
36
24
log(mx)
Câu 73. [3-1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m ≤ 0.
B. m < 0 ∨ m > 4.
C. m < 0 ∨ m = 4.
D. m < 0.
0 0 0 0

0
Câu 74.√ [2] Cho hình lâp phương
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
√ bằng
a 6
a 6
a 6
a 3
A.
.
B.
.
C.
.
D.
.
7
2
3
2
Câu 75.
√ [4-1246d] Trong tất cả√các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất của |z|
A. 3.
B. 5.
C. 2.
D. 1.
x+2
Câu 76. Tính lim
bằng?
x→2

x
A. 1.
B. 3.
C. 0.
D. 2.

Trang 6/10 Mã đề 1


Câu 77. Khối đa diện đều loại {4; 3} có số đỉnh
A. 8.
B. 10.

C. 4.

D. 6.

Câu 78. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.


B. Cả hai câu trên sai.

Câu 79. Khối đa diện đều loại {5; 3} có số cạnh
A. 30.
B. 8.

C. Chỉ có (I) đúng.

D. Cả hai câu trên đúng.

C. 12.

D. 20.

Câu 80. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 3.
B. 1.
C. Vô nghiệm.
D. 2.
Câu 81. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 6 đỉnh, 12 cạnh, 8 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
1
Câu 82. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y

0
y
A. xy = e + 1.
B. xy = −e + 1.
C. xy0 = ey − 1.
D. xy0 = −ey − 1.
Câu 83. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD)
cùng vng
√ góc với đáy, S C = a3 √3. Thể tích khối chóp S .ABCD là
3
a 3
a 3
a3
A.
.
B.
.
C. a3 .
D.
.
3
9
3
Câu 84. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
A.
.
B. .

C. 2.
D. 1.
2
2
Câu 85.
!
Z
Z Các khẳng định nào sau
Z đây là sai?
0

A.
Z
C.

f (x)dx = f (x).
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. B.
Z
Z
Z
k f (x)dx = k
f (x)dx, k là hằng số.
D.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.

Câu 86. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.

A. 0, 8%.
B. 0, 7%.
C. 0, 6%.
D. 0, 5%.
Câu 87. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4. Biết rằng tập hợp các điểm M sao
cho MA = 3MB là một mặt cầu. Khi đó bán kính mặt cầu bằng?
9
3
A. .
B. .
C. 3.
D. 1.
2
2
2
Câu 88. [2]√Tìm m để giá trị nhỏ nhất của hàm số y = 2x3 + (m√
+ 1)2 x trên [0; 1] bằng 2
A. m = ± 3.
B. m = ±1.
C. m = ± 2.
D. m = ±3.
Câu 89. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn cạnh.
B. Ba cạnh.
C. Hai cạnh.
D. Năm cạnh.
1
Câu 90. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x

+
1
A. xy0 = ey − 1.
B. xy0 = −ey − 1.
C. xy0 = ey + 1.
D. xy0 = −ey + 1.
Trang 7/10 Mã đề 1


Câu 91. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của

√ hình chóp S .ABCD với

√mặt phẳng (AIC) có diện tích
2
2
2
2
a 2
a 7
11a
a 5
.
B.
.
C.
.

D.
.
A.
16
4
8
32
Câu 92. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 2.
C. 4.
D. 3.
Câu 93. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đơi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 10 năm.
C. 13 năm.
D. 12 năm.
Câu 94. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A
đáy (ABC)
một góc bằng 60◦ . Thể√tích khối chóp S .ABC là

a3 3
a3 3
a3
A.
.
B.

.
C.
.
12
4
4
1 − 2n
bằng?
Câu 95. [1] Tính lim
3n + 1
2
2
A. − .
B. .
C. 1.
3
3
Câu 96. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {3; 5}.
C. {4; 3}.

⊥ (ABC) và (S BC) hợp với

a3 3
D.
.
8

D.


1
.
3

D. {3; 4}.

Câu 97. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log π4 x.
B. y = log 14 x.

C. y = loga x trong đó a = 3 − 2.
D. y = log √2 x.
Câu 98. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt√bên (S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD
√ là
8a3 3
8a3 3
4a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
9
3

9
9
 π π
3
Câu 99. Cho hàm số y = 3 sin x − 4 sin x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.
B. 3.
C. 7.
D. −1.
Câu 100. Biểu thức nào sau đây khơng
√ 0 có nghĩa
−1
A. (−1) .
B. (− 2) .

C.


−1.

−3

D. 0−1 .

Câu 101. [1] Phương trình log2 4x − log 2x 2 = 3 có bao nhiêu nghiệm?
A. 3 nghiệm.
B. Vơ nghiệm.
C. 1 nghiệm.
D. 2 nghiệm.

Z 2
ln(x + 1)
Câu 102. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 1.
C. 0.
D. 3.
Câu 103. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 22.
B. 21.
C. 23.
D. 24.
2
2n − 1
Câu 104. Tính lim 6
3n + n4
2
A. 2.
B. 1.
C. 0.
D. .
3
Trang 8/10 Mã đề 1





4n2 + 1 − n + 2
bằng
Câu 105. Tính lim
2n − 3
3
B. +∞.
C. 2.
D. 1.
A. .
2
Câu 106. [1] Phương trình log3 (1 − x) = 2 có nghiệm
A. x = −8.
B. x = −5.
C. x = 0.
D. x = −2.
x−1
Câu 107. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB
√ có độ dài bằng

A. 6.
B. 2.
C. 2 2.
D. 2 3.
Câu 108. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?

A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
Câu 109. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 8.
x−3
bằng?
Câu 110. [1] Tính lim
x→3 x + 3
A. +∞.
B. 1.
Câu 111. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối 12 mặt đều.

C. 4.

D. 6.

C. −∞.

D. 0.

C. Khối bát diện đều.

D. Khối tứ diện đều.

Câu 112. Xác định phần ảo của số phức z = (2 + 3i)(2 − 3i)

A. 0.
B. 9.
C. Không tồn tại.

D. 13.

Câu 113. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình chóp.
B. Hình lập phương.
C. Hình lăng trụ.

D. Hình tam giác.

Câu 114. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m < 0.
B. m , 0.
C. m = 0.

D. m > 0.

Câu 115.
√ Thể tích của tứ diện đều
√cạnh bằng a


3
3
a 2
a 2
a3 2

a3 2
A.
.
B.
.
C.
.
D.
.
2
12
6
4
Câu 116. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 3 lần.
C. Tăng gấp 18 lần.
D. Tăng gấp 27 lần.
Câu 117. Trong khơng gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox. Gọi E(6; 4; 0), F(1; 2; 0)
lần lượt là hình chiếu của B, C lên các !cạnh AC, AB. Tọa độ hình!chiếu của A lên BC là !
5
8
7
A. (2; 0; 0).
B.
; 0; 0 .
C.
; 0; 0 .
D.

; 0; 0 .
3
3
3
Câu 118. Khối đa diện đều loại {3; 3} có số mặt
A. 3.
B. 2.

C. 5.

Câu 119. Hàm số f có nguyên hàm trên K nếu
A. f (x) có giá trị lớn nhất trên K.
C. f (x) liên tục trên K.

B. f (x) xác định trên K.
D. f (x) có giá trị nhỏ nhất trên K.

D. 4.

Câu 120. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. Cả ba đáp án trên.
Trang 9/10 Mã đề 1


C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
Câu 121. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −2e2 .

B. 2e4 .
C. −e2 .
D. 2e2 .
Câu 122. Khối đa diện đều loại {3; 5} có số đỉnh
A. 8.
B. 12.

C. 20.

D. 30.

x2 −3x+8

Câu 123. [2] Tổng các nghiệm của phương trình 3
= 92x−1 là
A. 5.
B. 7.
C. 6.

D. 8.

Câu 124. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vng góc
với (S BC).
√ là
√ Thể tích khối chóp S 3.ABC


a3 3
a 2
a3 3

a3 3
A.
.
B.
.
C.
.
D.
.
6
12
12
4
d = 90◦ , ABC
d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥
Câu 125. Cho hình chóp S .ABC có BAC
(ABC). Thể
√ tích khối chóp S .ABC

√là
3
3

a3 3
a 2
a 3
2
D.
A.
.

B.
.
C. 2a 2.
.
24
24
12
2

Câu 126. [2] Tổng các nghiệm của phương trình 3 x −4x+5 = 9 là
A. 5.
B. 2.
C. 3.

D. 4.

Câu 127. [3-12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 2.
C. 1.
D. Vô nghiệm.
2−n
bằng
Câu 128. Giá trị của giới hạn lim
n+1
A. −1.
B. 1.
C. 0.
D. 2.
Câu 129.

Trong các khẳng định sau, khẳng định nào sai?Z
Z
1
xα+1
A.
dx = ln |x| + C, C là hằng số.
B.
xα dx =
+ C, C là hằng số.
α+1
Z x
Z
C.

dx = x + C, C là hằng số.

D.

0dx = C, C là hằng số.

Câu 130. Phát biểu nào sau đây là sai?
A. lim un = c (un = c là hằng số).
C. lim qn = 0 (|q| > 1).

1
= 0.
nk
1
D. lim = 0.
n


B. lim

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.

C

2. A

3.

C

4.

C

5. A

6.

7. A


8.

C

10.

C

12.

C

9.

D

11. A
13.

C

15. A
17.

B

19.

D


21.

C

D

14.

B

16.

B

18.

C

20.

C

22.

B
B

23.


B

24.

25.

B

26.

27.

B

28.

C
C

D

29.

C

30.

31.

C


32.

B

34.

B

33.

B

35. A
C

37.

36.

C

38.

C

39.

B


40.

D

41.

B

42.

D

43. A
45.

B

44.

C

46.

C

47.

C

48.


49.

C

50.

D

52.

D

51. A
53.

B

54. A

C

55. A

56.

D

57. A


58.

B

59.

B

60.

B

61.

B

62.

B

63. A
65.

64. A
D

66. A

67. A


68. A
1


69.

70. A

B

71. A

72.

B

73.

C

74.

75.

C

76.

D


77. A

78.

D

79. A

80.

D

81.

B

83.

D

85. A

82.

C

84.

C


86.

B
B

87.

B

88.

89.

B

90. A
C

91.

96.
D

C
D

100.

101.


D

102. A

103. A

C

104.

105.

D

106. A

107.

D

108. A

109.

D

110.

B


D

112. A

113.
115.

B

98.

99. A

111.

D

94.

95. A
97.

C

92.
D

93.

C


D

114.

B

B

116.

D

117.

C

118.

D

119.

C

120.

D

121.


C

122.

123.

B

124.

C

126.

125. A
127.
129.

B
D

128. A

C
B

130.

2


C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×