Tải bản đầy đủ (.pdf) (12 trang)

Đê ôn thptqg 1 (516)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.77 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 11 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh 2a, tam giác S AB đều, H là trung điểm
cạnh AB, biết S H ⊥ (ABCD). Thể √
tích khối chóp S .ABCD là√
3
3
4a 3
2a3 3
a3
a
.
B.
.
C.
.
D.
.
A.
6
3
3
3
Câu 2. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là


1
1
B. − 2 .
C. −e.
A. − .
2e
e

1
D. − .
e

Câu 3. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 4 mặt.
B. 3 mặt.
C. 9 mặt.
D. 6 mặt.
Câu 4. [2] Cho hình chóp S .ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai đường thẳng S B và AD bằng




a 2
a 2
A. a 3.
B.
.
C. a 2.
D.

.
3
2
Câu 5. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.

B. Chỉ có (I) đúng.


Câu 6. [12215d] Tìm m để phương trình 4 x+
3
9
B. 0 ≤ m ≤ .
A. 0 < m ≤ .
4
4

1−x2

C. Cả hai câu trên đúng. D. Cả hai câu trên sai.



− 3m + 4 = 0 có nghiệm
3
C. 0 ≤ m ≤ .
D. m ≥ 0.
4

− 4.2 x+

1−x2

Câu 7. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
ab
1
1
ab
A. 2
.
B. √
.
C. √
.
D. √
.
2
a +b
2 a2 + b2
a2 + b2

a2 + b2
Câu 8. [1] Tính lim
A. 0.

1 − n2
bằng?
2n2 + 1
1
B. .
2

1
C. − .
2

D.

1
.
3

3

Câu 9. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e2 .
B. e5 .
C. e3 .


Câu 10. Tìm

giá
trị
lớn
nhất
của
hàm
số
y
=
x
+
3
+
6√− x

A. 2 + 3.
B. 3.
C. 2 3.

D. e.

D. 3 2.

Câu 11. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 6510 m.
B. 2400 m.
C. 1134 m.
D. 1202 m.
Trang 1/11 Mã đề 1



Câu 12. Cho hàm số y = x3 + 3x2 . Mệnh đề nào sau đây là đúng?
A. Hàm số đồng biến trên các khoảng (−∞; −2) và (0; +∞).
B. Hàm số nghịch biến trên các khoảng (−∞; −2) và (0; +∞).
C. Hàm số đồng biến trên các khoảng (−∞; 0) và (2; +∞).
D. Hàm số nghịch biến trên khoảng (−2; 1).
Câu 13. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 . Thể tích của khối lập phương đó
là:
A. 84cm3 .
B. 91cm3 .
C. 64cm3 .
D. 48cm3 .
Câu 14. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (0; 2).
B. (−∞; 1).
C. R.

D. (2; +∞).

Câu 15. Khối đa diện đều loại {5; 3} có số mặt
A. 30.
B. 8.

D. 12.

C. 20.

Câu 16. [1] !Tập xác định của hàm số y != log3 (2x + 1) là
!

1
1
1
; +∞ .
B. − ; +∞ .
C. −∞; − .
A.
2
2
2

!
1
D. −∞; .
2
8
Câu 17. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 96.
B. 64.
C. 82.
D. 81.

Câu 18. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. Vơ số.
B. 1.
C. 2.
D. 3.
Câu 19. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

A. Năm cạnh.
B. Hai cạnh.
C. Ba cạnh.

D. Bốn cạnh.

Câu 20. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 25 m.
B. 387 m.
C. 1587 m.
D. 27 m.
Câu 21. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = loga 2.
B. log2 a = − loga 2.
C. log2 a =
.
D. log2 a =
.
log2 a
loga 2
Câu 22. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1

1
A. m ≥ .
B. m > .
C. m < .
D. m ≤ .
4
4
4
4
2
Câu 23. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 8 m.
B. 24 m.
C. 12 m.
D. 16 m.
Câu 24. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = −18.
C. y(−2) = 22.
D. y(−2) = 2.
Câu 25. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có cơng bội là 2. Thể tích
hình hộp đã cho là 1728. Khi đó, các kích thước của hình hộp
√ là√
A. 8, 16, 32.
B. 2, 4, 8.
C. 2 3, 4 3, 38.
D. 6, 12, 24.
Câu 26. Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a và S A ⊥ (ABCD). Mặt bên (S CD)

hợp với đáy
một góc 60◦ . Thể tích√khối chóp S .ABCD là √


2a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D. a3 3.
3
6
3
Trang 2/11 Mã đề 1


Câu 27. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(−4; −8)(.
C. A(4; 8).
D. A(4; −8).
Câu 28. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; 2).
B. Hàm số nghịch biến trên khoảng (−∞; 2).
C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số đồng biến trên khoảng (0; +∞).

Câu 29. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 12.
C. ln 4.
D. ln 10.
Câu 30. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 5
a3 3
a3 5
a3 5
.
B.
.
C.
.
D.
.
A.
4
12
12
6
Câu 31. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là

A. (II) và (III).

B. (I) và (II).

Câu 32.
Z Các khẳng định nào sau
Z đây là sai?

C. (I) và (III).
Z

D. Cả ba mệnh đề.
!0

f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C. B.
f (x)dx = f (x).
Z
Z
Z
Z
C.
k f (x)dx = k
f (x)dx, k là hằng số.
D.
f (x)dx = F(x) + C ⇒
f (t)dt = F(t) + C.
A.

2−n

Câu 33. Giá trị của giới hạn lim
bằng
n+1
A. 2.
B. 1.

C. −1.

D. 0.

Câu 34. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. e2016 .
B. 0.
C. 1.
D. 22016 .
Câu 35. [4-1121h] Cho hình chóp S .ABCD đáy ABCD là hình vng, biết AB = a, ∠S AD = 90◦ và tam
giác S AB là tam giác đều. Gọi Dt là đường thẳng đi qua D và song song với S C. Gọi I là giao điểm của Dt
và mặt phẳng
(S AB). Thiết diện của
phẳng (AIC) có diện√tích là
√ hình chóp S .ABCD với mặt

2
2
2
a 2
11a
a2 5
a 7

.
B.
.
C.
.
D.
.
A.
8
4
32
16
 π
Câu 36. [2-c] Giá trị lớn nhất của hàm số y = e x cos x trên đoạn 0; là
2


3 π6
2 π4
1 π3
A. e .
B.
e .
C.
e .
D. 1.
2
2
2
Câu 37. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥

(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là



a3 6
a3 15
a3 5
3
A.
.
B. a 6.
C.
.
D.
.
3
3
3
9t
Câu 38. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 2.
B. 1.
C. Vô số.
D. 0.
Trang 3/11 Mã đề 1



Câu 39. Khối đa diện đều loại {3; 4} có số đỉnh
A. 10.
B. 6.

C. 4.

D. 8.

Câu 40. Cho hình chóp S .ABC có đáy ABC là tam giác vng cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a 3
a3 6
a3 6
A.
.
B.
.
C.
.
D.
.
8
24
24

48
Câu 41. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. (4; 6, 5].
B. [6, 5; +∞).
C. (−∞; 6, 5).
D. (4; +∞).
Câu 42. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 1.
B. 3.
C. 0.

D. 2.

d = 30◦ , biết S BC là tam giác đều
Câu 43. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.

.
13
26
9
16
2n + 1
Câu 44. Tính giới hạn lim
3n + 2
2
3
1
A. 0.
B. .
C. .
D. .
3
2
2
Câu 45. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
x+2
bằng?
Câu 46. Tính lim
x→2
x
A. 2.
B. 1.

C. 0.
D. 3.
Câu 47. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối 12 mặt đều.

C. Khối bát diện đều.

D. Khối tứ diện đều.

Câu 48. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.

C. Khối 12 mặt đều.

D. Khối 20 mặt đều.

Câu 49. Dãy số nào sau đây có giới hạn khác 0?
sin n
1
A.
.
B. .
n
n

C.

n+1
.

n

Câu 50. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. e.
C. 4 − 2 ln 2.

1
D. √ .
n
D. −2 + 2 ln 2.

Câu 51. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 50, 7 triệu đồng.
C. 20, 128 triệu đồng. D. 70, 128 triệu đồng.
Câu 52. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R \ {0}.
B. D = R \ {1}.

C. D = R.

D. D = (0; +∞).

Câu 53. Cho hình chóp S .ABC. Gọi M là trung điểm của S A. Mặt phẳng BMC chia hình chóp S .ABC
thành
A. Hai hình chóp tứ giác.
B. Một hình chóp tứ giác và một hình chóp ngũ giác.

C. Một hình chóp tam giác và một hình chóp tứ giác.
D. Hai hình chóp tam giác.
Trang 4/11 Mã đề 1


Câu 54. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 3.
B. −6.
C. 0.
D. −3.
Câu 55. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
18
15
6
9
Câu 56. Tìm giá trị lớn chất của hàm số y = x3 − 2x2 − 4x + 1 trên đoạn [1; 3].
A. −2.

B. −4.


C. −7.

Câu 57. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. 1 − sin 2x.
B. 1 + 2 sin 2x.
C. −1 + sin x cos x.
Câu 58. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 135.
B. S = 24.
Câu 59. Khối đa diện đều loại {3; 3} có số mặt
A. 2.
B. 4.
log7 16
Câu 60. [1-c] Giá trị của biểu thức
log7 15 − log7
A. 4.
B. 2.

15
30

D.

67
.
27

D. −1 + 2 sin 2x.


m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e

C. S = 22.

D. S = 32.

C. 3.

D. 5.

bằng
C. −4.

D. −2.

Câu 61.
Z Trong các khẳng định sau, khẳng định nào sai? Z
1
A.
dx = ln |x| + C, C là hằng số.
B.
dx = x + C, C là hằng số.
x
Z
Z
xα+1

α
C.
x dx =
+ C, C là hằng số.
D.
0dx = C, C là hằng số.
α+1
!
1
1
1
Câu 62. [3-1131d] Tính lim +
+ ··· +
1 1+2
1 + 2 + ··· + n
3
5
A. 2.
B. .
C. +∞.
D. .
2
2
Câu 63. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0. Tìm giá trị nhỏ nhất của P =
xy + x + 2y + 17
A. −5.
B. −12.
C. −9.
D. −15.
Câu 64. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng

rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 12 năm.
B. 14 năm.
C. 10 năm.
D. 11 năm.
Câu 65. [2] Cho hai mặt phẳng (P) và (Q) vng góc với nhau và cắt nhau theo giao tuyến ∆. Lấy A, B
thuộc ∆ và đặt AB = a. Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vng góc với ∆ và
AC = BD = a. Khoảng cách từ A√đến mặt phẳng (BCD) bằng



a 2
a 2
A. 2a 2.
B.
.
C. a 2.
D.
.
2
4
Câu 66. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 10 mặt.

D. 8 mặt.
Trang 5/11 Mã đề 1



x+3
Câu 67. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 1.
B. Vô số.
C. 3.
D. 2.
Câu 68. [1] Đạo hàm của hàm số y = 2 x là
1
1
.
B. y0 = x
.
A. y0 =
ln 2
2 . ln x

C. y0 = 2 x . ln 2.

D. y0 = 2 x . ln x.

1

Câu 69. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = R.
B. D = (1; +∞).

C. D = R \ {1}.
D. D = (−∞; 1).
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 70. Giá trị lớn nhất của hàm số y =
m−x
3
A. 0.
B. −2.
C. 1.
D. −5.
3a
, hình chiếu vng
Câu 71. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
2a
a
a 2
A. .
B.
.
C. .
D.
.
4

3
3
3
log 2x
Câu 72. [1229d] Đạo hàm của hàm số y =

x2
1
1 − 2 ln 2x
1 − 2 log 2x
1 − 4 ln 2x
.
C. y0 = 3
.
D. y0 = 3
.
A. y0 =
.
B. y0 =
3
3
x
2x ln 10
2x ln 10
x ln 10
x−2
Câu 73. Tính lim
x→+∞ x + 3
2
A. 1.

B. −3.
C. 2.
D. − .
3
Câu 74. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 68.
B. 5.
C.
.
D. 34.
17
Câu 75. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d ⊥ P.
B. d nằm trên P.
C. d song song với (P).
D. d nằm trên P hoặc d ⊥ P.
Câu 76. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 6.
B. V = 4.
C. V = 3.
D. V = 5.
Câu 77. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh

A, B, C, M, N, P bằng




20 3
14 3
A. 6 3.
B.
.
C.
.
D. 8 3.
3
3
Câu 78. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
5a
a
2a
.
B.
.
C. .
D.
.
A.
9

9
9
9
7n2 − 2n3 + 1
Câu 79. Tính lim 3
3n + 2n2 + 1
7
2
A. .
B. 0.
C. 1.
D. - .
3
3
Trang 6/11 Mã đề 1



Câu 80. [1] Cho a > 0, a , 1. Giá trị của biểu thức loga 3 a bằng
1
1
C. 3.
D. − .
A. −3.
B. .
3
3
Câu 81. Khối đa diện đều loại {3; 5} có số mặt
A. 12.
B. 20.

C. 8.
D. 30.
x−3 x−2 x−1
x
Câu 82. [4-1213d] Cho hai hàm số y =
+
+
+
và y = |x + 2| − x − m (m là tham
x−2 x−1
x
x+1
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; 2).
B. (−∞; 2].
C. [2; +∞).
D. (2; +∞).
Câu 83. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.
C. 8 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 6 mặt.
Câu 84. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
!0
Z
B.
f (x)dx = f (x).
Z

C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
√3
4
Câu 85. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
5
2
7
A. a 3 .
B. a 8 .
C. a 3 .
D. a 3 .
1 − xy
Câu 86. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y
Pmin của P = x√+ y.



2 11 − 3
9 11 + 19
9 11 − 19
18 11 − 29
A. Pmin =
.

B. Pmin =
. C. Pmin =
. D. Pmin =
.
3
9
9
21
Câu 87. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
Câu 88. [2] Ơng A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ơng muốn hồn nợ
ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
100.1, 03
120.(1, 12)3
A. m =
triệu.
B. m =
triệu.
3
(1, 12) − 1
3
(1, 01)3
100.(1, 01)3
C. m =

triệu.
D.
m
=
triệu.
(1, 01)3 − 1
3
Câu 89. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là 3, phần ảo là −4.
D. Phần thực là −3, phần ảo là 4.
Câu 90. Hàm số y =
A. x = 0.

x2 − 3x + 3
đạt cực đại tại
x−2
B. x = 1.

C. x = 2.

D. x = 3.
Trang 7/11 Mã đề 1


x−2 x−1
x
x+1
+

+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. (−∞; −3).
C. (−3; +∞).
D. [−3; +∞).
Câu 91. [4-1212d] Cho hai hàm số y =

Câu 92. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
Thể tích khối chóp S .ABC√là
vng góc√với đáy và S C = a 3. √

3
3
2a 6
a 3
a3 6
a3 3
A.
.
B.
.
C.

.
D.
.
9
2
12
4
!
1
1
1
Câu 93. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 0.
B. .
C. 1.
D. 2.
2
2n + 1
Câu 94. Tìm giới hạn lim
n+1
A. 1.
B. 2.
C. 3.
D. 0.


Câu 95. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) √
bằng


a 38
3a 38
3a
3a 58
A.
.
B.
.
C.
.
D.
.
29
29
29
29
Câu 96. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 10 năm.
B. 8 năm.
C. 9 năm.
D. 7 năm.
Câu 97. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với

đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3 3
a3 3
a3 3
a3
.
B.
.
C.
.
D.
.
A.
4
12
4
8
Câu 98. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 32π.
B. V = 4π.
C. 8π.
D. 16π.
Câu 99. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A.
.
B. 5.

C. 7.
D. .
2
2
2
Câu 100. Cho z1 , z2 là hai nghiệm của phương trình z + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −21.
B. P = −10.
C. P = 10.
D. P = 21.
5
Câu 101. Tính lim
n+3
A. 1.
B. 2.
C. 0.
D. 3.
Câu 102. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (1; −3).
B. (−1; −7).
C. (0; −2).
Câu 103. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 8.

D. (2; 2).

C. 6.

D. 4.

2

x
Câu 104. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 1.
B. M = e, m = 0.
C. M = , m = 0.
D. M = e, m = .
e
e
Trang 8/11 Mã đề 1


Câu 105. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim
A. −∞.

B. +∞.

C. 0.

un
bằng
vn
D. 1.

Câu 106. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. Ba mặt.

B. Hai mặt.
C. Một mặt.

D. Bốn mặt.

Câu 107. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
A. 2e + 1.

B. 2e.

C. 3.

D.

2
.
e

Câu 108. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số mặt của khối chóp bằng 2n+1.
C. Số đỉnh của khối chóp bằng 2n + 1.
D. Số mặt của khối chóp bằng số cạnh của khối chóp.
!
3n + 2
2
+ a − 4a = 0. Tổng các phần tử
Câu 109. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
n+2
của S bằng

A. 4.
B. 3.
C. 5.
D. 2.
Câu 110. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
A. Khối bát diện đều.
B. Khối lăng trụ tam giác.
C. Khối lập phương.
D. Khối tứ diện.
Câu 111. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 27 lần.
B. Tăng gấp 18 lần.
C. Tăng gấp 3 lần.
D. Tăng gấp 9 lần.
Câu 112. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 8.

C. 10.

D. 6.

Câu 113. Trong các mệnh đề dưới đây, mệnh đề nào sai?
A. Nếu lim un
B. Nếu lim un
C. Nếu lim un
D. Nếu lim un

!

un
= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
= +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
= 0.
= a , 0 và lim vn = ±∞ thì lim
!vn
un
= a > 0 và lim vn = 0 thì lim
= +∞.
vn

Câu 114. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {4; 3}.
B. {3; 4}.
C. {5; 3}.

D. {3; 5}.

3
2
x
Câu 115. [2]
√ Tìm m để giá trị lớn nhất của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng 8√
B. m = ±3.
C. m = ±1.
D. m = ± 3.

A. m = ± 2.

Câu 116. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 0, 8.
B. 7, 2.
C. −7, 2.

D. 72.

3
2
x
Câu 117. [2] Tìm m để giá trị nhỏ nhất
2
√ của hàm số y = 2x + (m + 1)2 trên [0; 1] bằng √
A. m = ±1.
B. m = ± 2.
C. m = ±3.
D. m = ± 3.


4n2 + 1 − n + 2
Câu 118. Tính lim
bằng
2n − 3
3
A. +∞.
B. 1.
C. .
D. 2.

2

Trang 9/11 Mã đề 1


9x
Câu 119. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. 2.
B. .
C. −1.
D. 1.
2
Câu 120. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Có một hoặc hai.
C. Khơng có.
D. Có một.
Câu 121. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 1.
B. 3.

C. +∞.

D. 2.



Câu 122. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √


a3 3
a3 3
a3
3
B.
.
C.
.
D.
.
A. a 3.
12
3
4
[ = 60◦ , S O
Câu 123. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc với mặt đáy và S O = a.
√ Khoảng cách từ A đến (S
√ BC) bằng


a 57
a 57
2a 57
A. a 57.

B.
.
C.
.
D.
.
19
17
19
!
x+1
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
Câu 124. [3] Cho hàm số f (x) = ln 2017 − ln
x
2016
2017
4035
A.
.
B. 2017.
C.
.
D.
.
2017
2018
2018
0 0 0 0
Câu 125.
a. Khoảng cách từ C đến √

AC 0 bằng
√ ABCD.A B C D cạnh √
√ [2] Cho hình lâp phương
a 3
a 6
a 6
a 6
A.
.
B.
.
C.
.
D.
.
2
7
2
3
Câu 126. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
(AB0C) và (A0C 0 D) bằng




a 3
2a 3
a 3
A. a 3.
B.

.
C.
.
D.
.
3
2
2
Câu 127. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. −1.
C. 2.
D. 6.
Câu 128. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 10 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 129. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 5.
B. 9.

C. 0.

D. 7.

Câu 130. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng√hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD

√ là

3
3
3
3
4a 3
8a 3
8a 3
a 3
A.
.
B.
.
C.
.
D.
.
9
9
3
9
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/11 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1

1.

B

2. A

3.

B

4.

5.

C
D

7.
9.

6.

C

8.

C

10.


B

11. A
C

14. A

15.

D

16.

17.

D

18.

19.

C

D

22.

23.

D


24.

25.

D

26.

B
C

28. A

C

29. A

30.
B

33.

C
D

D

27.


B

20.

21.

B

32. A
C

34.

35. A

36.

37. A

38. A

39.

D

12. A

13.

31.


D

B
C

40.

C

41. A

42.

C

43. A

44.

45. A

46. A

47. A

48.

B


49.

C

50.

51.

C

52.

53.

D

56. A
58.
60.

D

B
C
D

57.

D
B


61.

62. A
D

66. A
68.

C

54.
59.

C

64.

B

C

63.

B

65.

B


67.
69.

C
1

C
B


70. A

71.
D

72.
76.

73. A

B

77. A
79.

78. A
80.

B


82.

81.
D
C

94.

87.

D

89.

D

93.

C
B

96.

C

99.

D

C


95.

D

97.

D

100. A

101.

C

102.

103.

C

104.

105.

C

106.

107.


C

108. A

109. A

110.

111. A

112. A
D

113.

C

91. A

B

92.

B

85.

86. A
88.


D

83. A

C

84.

90.

D

75.

C

74.

B

C
B
D
D
D

114.

115. A


116.

C

117. A

118.

B
B

119.

D

120.

121.

D

122.

C

123.

D


124.

C

125.

D

126.

127.

D

128.

129.

B

130.

2

B
C
B




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×