Tải bản đầy đủ (.pdf) (13 trang)

Đê ôn thptqg 2 (52)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (154.58 KB, 13 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. 3.
C. Vô số.
D. 2.
Câu 2. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. f (x) có giới hạn hữu hạn khi x → a.
B. lim+ f (x) = lim− f (x) = a.
x→a

C. lim+ f (x) = lim− f (x) = +∞.
x→a

x→a

D. lim f (x) = f (a).
x→a

x→a

Câu 3. [1] Đạo hàm của làm số y = log x là


1
ln 10
1
1
B. y0 =
.
C. y0 =
.
D.
.
A. y0 = .
x
x ln 10
x
10 ln x
Câu 4. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n2 lần.
B. n lần.
C. 3n3 lần.
D. n3 lần.
!
x+1
Câu 5. [3] Cho hàm số f (x) = ln 2017 − ln
. Tính tổng S = f 0 (1) + f 0 (2) + · · · + f 0 (2017)
x
2016
2017
4035
.
B.

.
C.
.
D. 2017.
A.
2018
2017
2018
Câu 6. Cho hình chóp S .ABCD
√ có đáy ABCD là hình vng cạnh a. Hai mặt phẳng (S AB) và (S AD) cùng
vng góc
√ với đáy, S C = a 3. Thể
√ tích khối chóp S .ABCD là
a3 3
a3 3
a3
A.
.
B.
.
C. a3 .
D.
.
9
3
3
Câu 7. Dãy số nào sau đây có giới hạn là 0?
n2 − 3n
n2 + n + 1
A. un =

.
B.
u
=
.
n
n2
(n + 1)2
1 − 2n
bằng?
Câu 8. [1] Tính lim
3n + 1
1
2
A. .
B. .
3
3

C. un =

1 − 2n
.
5n + n2

C. 1.

Câu 9. Giá √
trị cực đại của hàm số y √
= x3 − 3x2 − 3x + 2


A. −3 + 4 2.
B. 3 − 4 2.
C. 3 + 4 2.
2n2 − 1
Câu 10. Tính lim 6
3n + n4
2
A. .
B. 1.
C. 0.
3
Câu 11. [2] Cho hàm số y = ln(2x + 1). Tìm m để y0 (e) = 2m + 1
1 − 2e
1 − 2e
1 + 2e
.
B. m =
.
C. m =
.
A. m =
4e + 2
4 − 2e
4e + 2
Câu 12. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 1.
B. −1.
C. 2.


D. un =

n2 − 2
.
5n − 3n2

2
D. − .
3

D. −3 − 4 2.

D. 2.

D. m =

1 + 2e
.
4 − 2e

D. 6.

1 − xy
= 3xy + x + 2y − 4. Tìm giá trị nhỏ nhất
x + 2y



18 11 − 29
9 11 − 19

9 11 + 19
=
. C. Pmin =
. D. Pmin =
.
21
9
9

Câu 13. [12210d] Xét các số thực dương x, y thỏa mãn log3
Pmin của P = x√+ y.
2 11 − 3
A. Pmin =
.
3

B. Pmin

Trang 1/10 Mã đề 1


Câu 14. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình
nhất?
A. 2.

B. 4.

1
3|x−1|


C. 1.

= 3m − 2 có nghiệm duy

D. 3.

t

9
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
+ m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. 2.
C. Vô số.
D. 1.
1
Câu 16. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 < m < −1.
B. (−∞; −2] ∪ [−1; +∞). C. −2 ≤ m ≤ −1.
D. (−∞; −2) ∪ (−1; +∞).
Câu 15. [4] Xét hàm số f (t) =

9t

Câu 17. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 4 đỉnh, 12 cạnh, 4 mặt.

C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 18.√Biểu thức nào sau đây khơng có nghĩa
A. (− 2)0 .
B. 0−1 .

C. (−1)−1 .

Câu 19. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 4 − 2 ln 2.
B. −2 + 2 ln 2.
C. e.

D.


−1.

−3

D. 1.

d = 300 .
Câu 20. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
Độ dài cạnh bên
CC 0 = 3a. Thể tích V của khối lăng trụ đã cho.



3a3 3

a3 3
3
3
.
B. V = 3a 3.
C. V = 6a .
D. V =
.
A. V =
2
2
Câu 21. [3] Cho hình lập phương ABCD.A0 B0C 0 D0 có cạnh bằng a. Khoảng cách giữa hai mặt phẳng
0 0
(AB0C) và
√ (A C D) bằng



2a 3
a 3
a 3
A.
.
B. a 3.
C.
.
D.
.
2
3

2
1
Câu 22. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = e + 1.
B. xy = e − 1.
C. xy0 = −ey + 1.
D. xy0 = −ey − 1.
Câu 23. Tứ diện đều thuộc loại
A. {4; 3}.
B. {5; 3}.

C. {3; 4}.

Câu 24. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [1; 2].
B. [−1; 2).
C. (1; 2).

D. {3; 3}.
D. (−∞; +∞).

Câu 25.
đề nào sai? Z
Z Cho hàm sốZf (x), g(x) liên tục trên R. Trong cácZmệnh đề sau, mệnh Z

A.
k f (x)dx = f
f (x)dx, k ∈ R, k , 0.
B.
( f (x) + g(x))dx =
f (x)dx + g(x)dx.
Z
Z
Z
Z
Z
Z
C.
( f (x) − g(x))dx =
f (x)dx − g(x)dx.
D.
f (x)g(x)dx =
f (x)dx g(x)dx.
Câu 26. Tính lim
x→2

A. 0.

x+2
bằng?
x
B. 2.

C. 1.


D. 3.

Câu 27. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
Trang 2/10 Mã đề 1


Câu 28. [4-1246d] Trong tất cả√các số phức z thỏa mãn |z√− i| = 1. Tìm giá trị lớn nhất của |z|
C. 5.
D. 2.
A. 1.
B. 3.
Câu 29. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm cạnh.
B. Bốn cạnh.
C. Hai cạnh.
Câu 30. [2] Cho hàm số f (x) = x ln2 x. Giá trị f 0 (e) bằng
2
B. 3.
C. 2e.
A. .
e
Câu 31.! Dãy số nào sau đây có giới! hạn là 0?
n
n
1
5

A.
.
B. − .
3
3

!n
4
C.
.
e

D. Ba cạnh.
D. 2e + 1.
!n
5
D.
.
3

Câu 32. Giả sử ta có lim f (x) = a và lim f (x) = b. Trong các mệnh đề sau, mệnh đề nào sai?
x→+∞

x→+∞

A. lim [ f (x) − g(x)] = a − b.
x→+∞
f (x) a
C. lim
= .

x→+∞ g(x)
b

B. lim [ f (x)g(x)] = ab.
x→+∞

D. lim [ f (x) + g(x)] = a + b.
x→+∞

Câu 33. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp
theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất khơng thay đổi và người đó khơng rút tiền ra?
A. 14 năm.
B. 12 năm.
C. 11 năm.
D. 10 năm.
Câu 34. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối
√ chóp S .ABCD là


a3 15
a3 5
a3 6
.
B.
.
C.
.

D. a3 6.
A.
3
3
3
Câu 35. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương.
(II) lim qn = +∞ nếu |q| < 1.
(III) lim qn = +∞ nếu |q| > 1.
A. 1.

B. 3.

C. 0.

D. 2.

Câu 36. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √


a3
a3 3
a3 3
a3 3
A.
.
B.
.

C.
.
D.
.
8
4
4
12
d = 60◦ . Đường chéo
Câu 37. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
0
0 0
0 0

BC của mặt bên (BCC B ) tạo với mặt phẳng (AA C C) một góc 30 . Thể tích của khối lăng trụ ABC.A0 B0C 0





a3 6
4a3 6
2a3 6
A.
.
B.
.
C.
.
D. a3 6.

3
3
3
Câu 38. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu khơng
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất không đổi và người đó khơng rút tiền ra?
A. 11 năm.
B. 12 năm.
C. 10 năm.
D. 13 năm.
Trang 3/10 Mã đề 1


[ = 60◦ , S O
Câu 39. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc

√ với mặt đáy và S O = a.√Khoảng cách từ O đến (S BC) bằng

a 57
a 57
2a 57
D.
A.
.
B.
.
C. a 57.
.

17
19
19
1
Câu 40. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = e + 1.
C. xy0 = ey − 1.
D. xy0 = −ey + 1.
Câu 41. [2]√Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8
B. m = ± 3.
C. m = ±3.
D. m = ±1.
A. m = ± 2.
Câu 42. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(−4; 8).
B. A(4; −8).
C. A(−4; −8)(.
D. A(4; 8).
Câu 43. Giá trị của giới hạn lim
A. 0.

B. 2.


2−n
bằng
n+1

C. 1.

D. −1.

Câu 44. Cho z là√nghiệm của phương trình x2 + x + 1 = 0. Tính P =√z4 + 2z3 − z
−1 + i 3
−1 − i 3
A. P =
.
B. P = 2.
C. P =
.
D. P = 2i.
2
2
Câu 45. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (2; 4; 4).
C. (1; 3; 2).
D. (2; 4; 6).
Câu 46. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3

. Khi đó thể tích khối lăng trụ là
BC là
4




a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
36
12
6
24
√3
4
Câu 47. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
5
2
5
7

A. a 8 .
B. a 3 .
C. a 3 .
D. a 3 .
Câu 48. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là 3, phần ảo là −4.
B. Phần thực là 3, phần ảo là 4.
C. Phần thực là −3, phần ảo là −4.
D. Phần thực là −3, phần ảo là 4.
Câu 49. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
C. f (x) xác định trên K.

B. f (x) có giá trị nhỏ nhất trên K.
D. f (x) có giá trị lớn nhất trên K.
a
1
+
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
C. 1.
D. 2.

Câu 50. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) =
A. 4.

B. 7.

Câu 51. Khối chóp ngũ giác có số cạnh là
A. 12 cạnh.

B. 10 cạnh.

C. 11 cạnh.

D. 9 cạnh.

Câu 52. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào
dưới đây, nếu trong khoảng thời gian này người đó khơng rút tiền ra và lãi suất không thay đổi?
A. 102.016.000.
B. 102.423.000.
C. 102.016.000.
D. 102.424.000.
Trang 4/10 Mã đề 1


Câu 53. [3] Biết rằng giá trị lớn nhất của hàm số y =

ln2 x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e

số tự nhiên. Tính S = m2 + 2n3
A. S = 22.
B. S = 32.
C. S = 24.
D. S = 135.

x
9
Câu 54. [2-c] Cho hàm số f (x) = x
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
9 +3
1
A. .
B. 1.
C. −1.
D. 2.
2
Z 1
6
2
3
. Tính
f (x)dx.
Câu 55. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
0
3x + 1
A. 6.

B. 2.

C. −1.

D. 4.

Câu 56. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0

ABC.A0 B
√ C là

3
a 3
a3
a3 3
A.
.
B.
.
C.
.
D. a3 .
2
3
6
Câu 57. [1] Tập xác định của hàm số y = 2 x−1 là
A. D = R.
B. D = (0; +∞).

C. D = R \ {0}.

D. D = R \ {1}.

Câu 58. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|





12 17
.
D. 5.
A. 68.
B. 34.
C.
17
3a
, hình chiếu vng
Câu 59. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
2
góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
a 2
a
2a
.
B. .
C.
.
D. .
A.
3
4
3
3
2

x − 5x + 6
Câu 60. Tính giới hạn lim
x→2
x−2
A. 1.
B. 0.
C. 5.
D. −1.
Câu 61. [2-c] Giá trị nhỏ nhất của hàm số y = x2 ln x trên đoạn [e−1 ; e] là
1
1
1
A. − .
B. −e.
C. − .
D. − 2 .
2e
e
e
Câu 62. Cho hàm số y = f (x) liên tục trên khoảng (a, b). Điều kiện cần và đủ để hàm số liên tục trên đoạn
[a, b] là?
A. lim+ f (x) = f (a) và lim− f (x) = f (b).
B. lim− f (x) = f (a) và lim+ f (x) = f (b).
x→a

x→b

x→a

x→b


C. lim− f (x) = f (a) và lim− f (x) = f (b).

Câu 63. Tính lim
A. 2.

5
n+3

B. 0.

x→a

x→b

x→a

x→b

D. lim+ f (x) = f (a) và lim+ f (x) = f (b).

C. 3.

Câu 64. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 4}.

D. 1.
D. {3; 5}.


Câu 65. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là


3
3
a 3
a 2
a3 6
a3 3
A.
.
B.
.
C.
.
D.
.
24
16
48
48
Trang 5/10 Mã đề 1


Câu 66. Tổng diện tích các mặt của một khối lập phương bằng 54cm2 .Thể tích của khối lập phương đó
là:
A. 46cm3 .

B. 72cm3 .
C. 27cm3 .
D. 64cm3 .
Câu 67. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
2a
8a
5a
a
B.
.
C.
.
D.
.
A. .
9
9
9
9
Câu 68. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 3, 03 triệu đồng.
B. 2, 22 triệu đồng.
C. 2, 20 triệu đồng.
D. 2, 25 triệu đồng.

Câu 69. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. n3 lần.
B. 2n3 lần.
C. 2n2 lần.
D. n3 lần.
Câu 70. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S B bằng

a 3
a
a
B. a.
C.
.
D. .
A. .
2
2
3
Câu 71. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
A. −2.
B. 2.
C. − .
D. .
2
2
Câu 72. Cho khối chóp S .ABC

√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
với
đáy

S
C
=
a
3. √
Thể tích khối chóp S .ABC√là


3
3
a 3
a 6
a3 3
2a3 6
A.
.
B.
.
C.
.
D.
.
2
12
4

9
8
Câu 73. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 81.
B. 96.
C. 82.
D. 64.
Câu 74. [1225d] Tìm tham số thực m để phương trình log2 (5 x − 1) log4 (2.5 x − 2) = m có nghiệm thực
x≥1
A. m ≥ 3.
B. m ≤ 3.
C. m < 3.
D. m > 3.
Câu 75. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 1.

B. 2.

C. 3.

D. +∞.

Câu 76. Khối đa diện đều nào sau đây có mặt khơng phải là tam giác đều?
A. Tứ diện đều.
B. Thập nhị diện đều. C. Bát diện đều.

D. Nhị thập diện đều.


Câu 77. Hình nào trong các hình sau đây khơng là khối đa diện?
A. Hình lăng trụ.
B. Hình tam giác.
C. Hình chóp.

D. Hình lập phương.

Câu 78. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog a 5 bằng

1
A. .
B. 25.
C. 5.
5
Câu 79. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Năm mặt.
B. Ba mặt.
C. Bốn mặt.


D. 5.

D. Hai mặt.
Trang 6/10 Mã đề 1


Câu 80. Khối đa diện đều loại {5; 3} có số đỉnh
A. 20.
B. 30.


C. 8.

D. 12.

Câu 81. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ .
Tính thể√tích của khối chóp S .ABC theo a


a3 5
a3
a3 15
a3 15
A.
.
B.
.
C.
.
D.
.
25
3
5
25
Câu 82. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
A. V = 3S h.
B. V = S h.

C. V = S h.
D. V = S h.
2
3
!
1
1
1
+ ··· +
Câu 83. [3-1131d] Tính lim +
1 1+2
1 + 2 + ··· + n
3
5
A. 2.
B. .
C. +∞.
D. .
2
2

d = 30 , biết S BC là tam giác đều
Câu 84. [3] Cho hình chóp S .ABC có đáy là tam giác vuông tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39

a 39
A.
.
B.
.
C.
.
D.
.
13
9
16
26
Câu 85. Phần thực và phần ảo của số phức z = −i + 4 lần lượt là
A. Phần thực là −1, phần ảo là −4.
B. Phần thực là −1, phần ảo là 4.
C. Phần thực là 4, phần ảo là 1.
D. Phần thực là 4, phần ảo là −1.
2x + 1
Câu 86. Tính giới hạn lim
x→+∞ x + 1
1
C. −1.
D. 2.
A. 1.
B. .
2
Câu 87. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng
thì lĩnh về được 61.758.000. Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay
đổi trong thời gian gửi.

A. 0, 8%.
B. 0, 5%.
C. 0, 7%.
D. 0, 6%.
Câu 88. Khối đa diện đều loại {3; 4} có số mặt
A. 10.
B. 12.

C. 6.

D. 8.

Câu 89. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 12 đỉnh, 30 cạnh, 12 mặt.
D. 20 đỉnh, 30 cạnh, 12 mặt.
1 − n2
Câu 90. [1] Tính lim 2
bằng?
2n + 1
1
1
A. .
B. − .
2
2
Câu 91.
! nào sau đây sai?
Z Mệnh đề


C. 0.

D.

1
.
3

0

A.

f (x)dx = f (x).

Z
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

f (x)dx = F(x) + C.

C. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Câu 92. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
Trang 7/10 Mã đề 1



A. 387 m.

B. 27 m.

C. 1587 m.

D. 25 m.


Câu 93. Cho chóp S .ABCD có đáy ABCD là hình vng cạnh a. Biết S A ⊥ (ABCD) và S A = a 3. Thể
tích của khối chóp S .ABCD là √


a3
a3 3
a3 3
A.
.
B.
.
C.
.
D. a3 3.
4
3
12
Câu 94. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng 2n.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.
C. Số mặt của khối chóp bằng 2n+1.

D. Số đỉnh của khối chóp bằng 2n + 1.
un
Câu 95. Cho các dãy số (un ) và (vn ) và lim un = a, lim vn = +∞ thì lim bằng
vn
A. 1.
B. −∞.
C. 0.
D. +∞.
Câu 96. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 3.
B. 2.
C. 0.

D. 1.

Câu 97. Khối đa diện loại {3; 5} có tên gọi là gì?
A. Khối 12 mặt đều.
B. Khối tứ diện đều.

D. Khối bát diện đều.

C. Khối 20 mặt đều.

Câu 98. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật AB = 2a, BC = 4a và (S AB) ⊥ (ABCD).
Hai mặt bên
(S BC) và (S AD) cùng
hợp với đáy một góc 30◦ .√Thể tích khối chóp S .ABCD

√ là


a3 3
8a3 3
4a3 3
8a3 3
.
B.
.
C.
.
D.
.
A.
3
9
9
9
q
2
Câu 99. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log3 x+ log23 x + 1+4m−1 = 0
√ i
h
có ít nhất một nghiệm thuộc đoạn 1; 3 3
A. m ∈ [0; 2].
B. m ∈ [0; 1].
C. m ∈ [0; 4].
D. m ∈ [−1; 0].
Câu 100. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 12.
2

7n − 2n3 + 1
Câu 101. Tính lim 3
3n + 2n2 + 1
A. 1.
B. 0.

C. 8.

D. 6.

7
2
.
D. - .
3
3
Câu 102.
Trong các khẳng định sau, khẳng định nào sai?Z
Z
A.
0dx = C, C là hằng số.
B.
dx = x + C, C là hằng số.
Z
Z
1
xα+1
C.
dx = ln |x| + C, C là hằng số.
D.

xα dx =
+ C, C là hằng số.
x
α+1
C.

2

2

sin x
Câu 103. [3-c]
+ 2cos x lần lượt là
√ Giá trị nhỏ nhất√và giá trị lớn nhất của hàm√số f (x) = 2
B. 2 và 3.
C. 2 2 và 3.
D. 2 và 3.
A. 2 và 2 2.

Câu 104. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 6 mặt.
B. 4 mặt.
C. 10 mặt.

D. 8 mặt.

Câu 105. ZCho hai hàmZy = f (x), y = g(x) có đạo hàm trên R. Phát biểu nào sau đây đúng?
f (x)dx =

A. Nếu

Z
B. Nếu
Z
C. Nếu

g(x)dx thì f (x) = g(x), ∀x ∈ R.

f 0 (x)dx =

Z

f (x)dx =

Z

g0 (x)dx thì f (x) = g(x), ∀x ∈ R.
g(x)dx thì f (x) , g(x), ∀x ∈ R.
Trang 8/10 Mã đề 1


D. Nếu f (x) = g(x) + 1, ∀x ∈ R thì

Z

f (x)dx =
0

Câu 106. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối bát diện đều. B. Khối tứ diện đều.


Z
g0 (x)dx.

C. Khối 20 mặt đều.

D. Khối 12 mặt đều.

Câu 107. Cho hình chóp S .ABC có S B = S C = BC = CA = a. Hai mặt (ABC) và (S AC) cùng vuông góc
với (S BC).

√ là

√ Thể tích khối chóp S 3.ABC
3
a 3
a3 3
a3 2
a 3
.
B.
.
C.
.
D.
.
A.
6
4
12
12

Câu 108. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 1200 cm2 .
B. 160 cm2 .
C. 120 cm2 .
D. 160 cm2 .
2mx + 1
1
Câu 109. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −2.
B. 1.
C. −5.
D. 0.
Câu 110. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b. Khoảng cách từ điểm B đến mặt
phẳng ACC 0 A0 bằng
1
ab
1
ab
.
B. √
.
C. √
.
D. √
.
A. 2

2
a +b
2 a2 + b2
a2 + b2
a2 + b2
Câu 111. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 1134 m.
C. 6510 m.
D. 2400 m.
Z 2
ln(x + 1)
Câu 112. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 1.
C. 3.
D. 0.
Câu 113. Dãy số nào sau đây có giới hạn khác 0?
1
1
B. .
A. √ .
n
n

C.


n+1
.
n

D.

sin n
.
n

Câu 114. Cho hàm số y = x3 − 2x2 + x + 1. Mệnh đề nào dưới đây đúng?

!
1
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số nghịch biến trên khoảng ; 1 .
3
!
!
1
1
C. Hàm số đồng biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng −∞; .
3
3
 π π
Câu 115. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. 1.

B. 7.
C. 3.
D. −1.
Câu 116. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. 3.
B. 1.
C. 2.

D. Vô nghiệm.

Câu 117. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m ≥ .
B. m < .
C. m > .
D. m ≤ .
4
4
4
4
log 2x
Câu 118. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 4 ln 2x
1 − 2 ln 2x
1

1 − 2 log 2x
A. y0 =
.
B. y0 = 3
.
C. y0 = 3
.
D. y0 =
.
3
2x ln 10
x ln 10
2x ln 10
x3
Câu 119. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương
ứng sẽ:
A. Tăng gấp 9 lần.
B. Tăng gấp 3 lần.
C. Tăng gấp 18 lần.
D. Tăng gấp 27 lần.
Trang 9/10 Mã đề 1


Câu 120. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
C. 1.
A. 2.
B. .
2
4x + 1

bằng?
Câu 121. [1] Tính lim
x→−∞ x + 1
A. −4.
B. −1.
C. 4.

D.

ln 2
.
2

D. 2.
x+2
Câu 122. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
đồng biến trên khoảng
x + 5m
(−∞; −10)?
A. 3.
B. 1.
C. 2.
D. Vơ số.
Câu 123. [2] Ơng A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm. Ông muốn hoàn
nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ơng bắt đầu hồn nợ; hai lần hoàn nợ liên tiếp
cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ
ngày vay. Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu?
Biết rằng lãi suất ngân hàng khơng đổi trong thời gian ơng A hồn nợ.
100.1, 03
100.(1, 01)3

A. m =
triệu.
B. m =
triệu.
3
3
120.(1, 12)3
(1, 01)3
C. m =
triệu.
D.
m
=
triệu.
(1, 12)3 − 1
(1, 01)3 − 1
Câu 124. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 4.
Câu 125. Cho I =

B. 2.
Z

3

x



C. 1.
dx =

0 4+2 x+1
trị P = a + b + c + d bằng?
A. P = 4.
B. P = 28.
2
x − 12x + 35
Câu 126. Tính lim
x→5
25 − 5x
2
2
A. − .
B. .
5
5

D. 3.

a
a
+ b ln 2 + c ln d, biết a, b, c, d ∈ Z và là phân số tối giản. Giá
d
d
C. P = 16.


D. P = −2.

C. +∞.

D. −∞.

Câu 127. [4] Cho lăng trụ ABC.A0 B0C 0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4. Gọi
M, N và P lần lượt là tâm của các mặt bên ABB0 A0 , ACC 0 A0 , BCC 0 B0 . Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng




20 3
14 3
A. 8 3.
B.
.
C. 6 3.
D.
.
3
3
log2 240 log2 15
Câu 128. [1-c] Giá trị biểu thức

+ log2 1 bằng
log3,75 2 log60 2
A. −8.
B. 4.

C. 3.
D. 1.
Câu 129. [2] Cho chóp đều S .ABCD có đáy là hình vuông tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng




a 6
A. a 3.
B. a 6.
C.
.
D. 2a 6.
2
Trang 10/10 Mã đề 1


log 2x

Câu 130. [1229d] Đạo hàm của hàm số y =
x2
1 − 2 log 2x
1
1 − 2 ln 2x
A. y0 =
.
B. y0 = 3
.
C. y0 = 3

.
3
x
2x ln 10
x ln 10

D. y0 =

1 − 4 ln 2x
.
2x3 ln 10

- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
3.

D
B

2.

D


4.

D

5.

C

6.

D

7.

C

8.

D

9. A

10.

11.

12.

C


13. A
15.

B

17. A

C

16.

C

19.

C

20.

21.

C

22.

23.

D

24.


25.

D

26.

B
D
B
D
B

28.

C

29.

D

14.
18.

27.

C

D


30.

31. A

D
B

32.
C

33.

C

34. A

35.

D

36. A

37.

D

38.

39.


D

40.

B
C

42.

41. A

D

43.

D

44.

B

45.

D

46.

B

47.


48.

B

49. A

50.

51.

B

52.

53.

B

54.

55.

D

58.

59. A

60.


61. A

62. A

D
B
C
D

64.

B

65.
67.

B

56. A

57. A

63.

D

D

D


66.
68.

C
1

C
B


69. A

70.

B

71. A

72.

B

73. A

74. A

75.

B


76.

B

77.

B

78.

B

79.

B

80. A

81.

D

82.

83. A

84. A
D


85.
87.

C

89. A
91.
93.

D

C

86.

D

88.

D

90.

B

92.

B

94. A


B

95.

C

96.

C

97.

C

98.

C

99.

D

100.

D

101.

D


102.

D

103.

104. A

C

105. A
107.

C

109.

D

106.

D

108.

D

110.


C

111.

C

112. A

113.

C

114.

B

116.

B
B

115. A
117.

D

118.

119.


D

120. A

121.

C

123.

122.
D

124.

125. A

126.

127.
129.

C
D
B

128. A

C
B


130.

2

C



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×