Tải bản đầy đủ (.pdf) (12 trang)

Đê ôn thptqg 3 (102)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (149.7 KB, 12 trang )

Free LATEX

BÀI TẬP TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút
Mã đề thi 1

Câu 1. Khối đa diện đều loại {3; 4} có số cạnh
A. 12.
B. 6.
C. 10.
D. 8.
2mx + 1
1
Câu 2. Giá trị lớn nhất của hàm số y =
trên đoạn [2; 3] là − khi m nhận giá trị bằng
m−x
3
A. −2.
B. 0.
C. −5.
D. 1.

Câu 3. [1] Biết log6 a = 2 thì log6 a bằng
A. 108.
B. 6.
C. 36.
D. 4.
[ = 60◦ , S A ⊥ (ABCD). Biết


Câu 4. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
rằng khoảng
√S .ABCD là

√ cách từ A đến cạnh S C là a. Thể tích khối chóp
3
3

a 2
a3 2
a 3
3
.
B. a 3.
C.
.
D.
.
A.
6
4
12
Câu 5. Phát biểu nào sau đây là sai?
1
A. lim k = 0.
B. lim un = c (un = c là hằng số).
n
1
C. lim qn = 0 (|q| > 1).
D. lim = 0.

n
1
Câu 6. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. −3.
B. − .
C. 3.
D. .
3
3
0
Câu 7. [2] Cho hàm số y = ln(2x + 1). Tìm m để y (e) = 2m + 1
1 + 2e
1 + 2e
1 − 2e
1 − 2e
.
B. m =
.
C. m =
.
D. m =
.
A. m =
4e + 2
4e + 2
4 − 2e

4 − 2e
ln2 x
m
Câu 8. [3] Biết rằng giá trị lớn nhất của hàm số y =
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 135.
C. S = 22.
D. S = 24.
x+2
đồng biến trên khoảng
Câu 9. Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
x + 5m
(−∞; −10)?
A. 2.
B. 3.
C. Vô số.
D. 1.
Câu 10. Trong các mệnh đề dưới đây, mệnh đề nào!sai?
un
A. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
B. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
C. Nếu lim un = a > 0 và lim vn = 0 thì lim

= +∞.
vn
!
un
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
Câu 11. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng (cả
vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất không thay đổi?
A. 16 tháng.
B. 15 tháng.
C. 17 tháng.
D. 18 tháng.
Trang 1/10 Mã đề 1


Câu 12. Khối đa diện đều loại {3; 5} có số đỉnh
A. 20.
B. 8.
Câu 13. Phần thực√và phần ảo của số phức
√ z=
A. Phần thực là 2 −√1, phần ảo là − √3.
C. Phần thực là 1 − 2, phần ảo là − 3.



C. 12.
D. 30.


2 − 1 − 3i lần lượt √l

B. Phần thực là √2, phần ảo là 1 − √3.
D. Phần thực là 2 − 1, phần ảo là 3.

Câu 14. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −6.
B. 3.
C. −3.
D. 0.
Câu 15. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 5.
B.
D. 34.
.
C. 68.
17
x−1
Câu 16. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng AB có độ dài bằng

√ đều ABI có hai đỉnh A, √

A. 6.
B. 2 3.
C. 2.
D. 2 2.
Câu 17. Tìm giá trị nhỏ nhất của hàm số y = (x2 − 2x + 3)2 − 7
A. −5.
B. Không tồn tại.
C. −7.
Câu 18. Phát biểu nào sau đây là sai?
1
A. lim k = 0 với k > 1.
n
C. lim un = c (Với un = c là hằng số).

D. −3.

B. lim qn = 1 với |q| > 1.
1
D. lim √ = 0.
n

Câu 19. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng 2n+1.
B. Số mặt của khối chóp bằng số cạnh của khối chóp.
C. Số cạnh của khối chóp bằng 2n.
D. Số đỉnh của khối chóp bằng 2n + 1.
!
1

1
1
Câu 20. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. .
B. 0.
C. 1.
D. 2.
2
Câu 21. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động
3
chậm dần đều với vận tốc v(t) = − t + 69(m/s), trong đó t là khoảng thời gian tính bằng giây. Hỏi trong 6
2
giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
A. 27 m.
B. 1587 m.
C. 387 m.
D. 25 m.
log(mx)
Câu 22. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0 ∨ m = 4.
B. m ≤ 0.
C. m < 0 ∨ m > 4.
D. m < 0.

Câu 23. Giá trị cực đại của hàm số y = x3 − 3x + 4 là
A. 6.
B. −1.
C. 1.
5
Câu 24. Tính lim
n+3
A. 3.
B. 1.
C. 2.

D. 2.
D. 0.

Câu 25. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 6 mặt.
B. 8 đỉnh, 12 cạnh, 8 mặt.
C. 6 đỉnh, 12 cạnh, 8 mặt.
D. 8 đỉnh, 10 cạnh, 6 mặt.
Trang 2/10 Mã đề 1


Câu 26.
√ Tìm giá trị lớn nhất của√hàm số y =
A. 3 2.
B. 2 3.





x + 3 + 6 −√x
C. 2 + 3.

D. 3.

Câu 27. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
1
1
C. V = 3S h.
D. V = S h.
A. V = S h.
B. V = S h.
2
3
Câu 28. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng
lên?
A. 2n3 lần.
B. n3 lần.
C. 2n2 lần.
D. n3 lần.
Z 1
6
2
3
Câu 29. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
. Tính
f (x)dx.
0
3x + 1
A. 2.


B. 4.

Câu 30. Khối đa diện đều loại {4; 3} có số cạnh
A. 20.
B. 12.

C. −1.

D. 6.

C. 10.

D. 30.

Câu 31. Phần thực và phần ảo của số phức z = −3 + 4i lần lượt là
A. Phần thực là −3, phần ảo là −4.
B. Phần thực là 3, phần ảo là −4.
C. Phần thực là −3, phần ảo là 4.
D. Phần thực là 3, phần ảo là 4.
Câu 32. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4





a3 3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
24
6
36
12
Câu 33. [1-c] Giá trị của biểu thức 3 log0,1 102,4 bằng
A. 7, 2.
B. 72.
C. 0, 8.
D. −7, 2.
Câu 34. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
D. .
A. 9.
B. 6.

C. .
2
2
Câu 35. Khẳng định nào sau đây đúng?
A. Hình lăng trụ tứ giác đều là hình lập phương.
B. Hình lăng trụ đứng là hình lăng trụ đều.
C. Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
D. Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Câu 36. Hàm số f có nguyên hàm trên K nếu
A. f (x) liên tục trên K.
B. f (x) có giá trị lớn nhất trên K.
C. f (x) xác định trên K.
D. f (x) có giá trị nhỏ nhất trên K.
1 − 2n
bằng?
Câu 37. [1] Tính lim
3n + 1
1
2
2
A. 1.
B. .
C. .
D. − .
3
3
3
Câu 38. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 4.

B. 0, 2.
C. 0, 5.
D. 0, 3.
Câu 39. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.
B. 7 năm.
C. 10 năm.
D. 8 năm.
Trang 3/10 Mã đề 1


Câu 40. [1] Cho a > 0, a , 1 .Giá trị của biểu thức alog
A. 25.
Câu 41.
A. 8.
Câu 42.
(0; +∞)?
A. 2.


a

5

bằng

1
B. 5.

C. .
D. 5.
5
Tính thể tích khối lập phương
biết tổng diện tích tất cả các mặt bằng 18.

B. 3 3.
C. 9.
D. 27.
x+3
[2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
B. 1.

C. Vô số.

D. 3.

8
Câu 43. [3-c] Cho 1 < x < 64. Tìm giá trị lớn nhất của f (x) = log42 x + 12 log22 x. log2
x
A. 82.
B. 81.
C. 96.
D. 64.
Câu 44. Cho hình chóp S .ABCD có đáy ABCD là hình vng biết S A ⊥ (ABCD), S C = a và S C hợp với
đáy một√góc bằng 60◦ . Thể tích khối
√ chóp S .ABCD là



3
3
a 6
a3 2
a3 3
a 3
A.
.
B.
.
C.
.
D.
.
24
48
16
48
2
Câu 45. Tính
√ mơ đun của số phức z biết (1 + 2i)z = 3 + 4i. √
√4
A. |z| = 5.
B. |z| = 5.
C. |z| = 2 5.
D. |z| = 5.
1
Câu 46. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?

x+1
0
y
0
y
A. xy = −e − 1.
B. xy = e − 1.
C. xy0 = −ey + 1.
D. xy0 = ey + 1.

Câu 47. [1228d] Cho phương trình (2 log23 x − log3 x − 1) 4 x − m = 0 (m là tham số thực). Có tất cả bao
nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
A. 63.
B. 64.
C. Vơ số.
D. 62.
Câu 48. Khối đa diện đều loại {5; 3} có số mặt
A. 8.
B. 30.
C. 20.
D. 12.
x
x+1
x−2 x−1
Câu 49. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1

x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. (−∞; −3].
C. (−3; +∞).
D. [−3; +∞).
1
Câu 50. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (−∞; 3).
C. (1; +∞).
D. (1; 3).
Câu 51. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 3, 5 triệu đồng.
B. 20, 128 triệu đồng. C. 70, 128 triệu đồng. D. 50, 7 triệu đồng.
Câu 52. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
A.
C.
.

B. a 6.
.
D.
.
2
6
3
Câu 53. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. −2 + 2 ln 2.
B. e.
C. 4 − 2 ln 2.
D. 1.
Câu 54. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
Trang 4/10 Mã đề 1


(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Cả hai câu trên sai.

C. Chỉ có (I) đúng.


D. Chỉ có (II) đúng.

Câu 55. [12211d] Số nghiệm của phương trình 12.3 x + 3.15 x − 5 x = 20 là
A. Vô nghiệm.
B. 3.
C. 2.

D. 1.

4x + 1
Câu 56. [1] Tính lim
bằng?
x→−∞ x + 1
A. 4.
B. 2.

C. −4.

D. −1.

Câu 57. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối lập phương.
B. Khối 12 mặt đều.

C. Khối tứ diện đều.

D. Khối bát diện đều.

Câu 58. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 4}.

B. {4; 3}.
C. {3; 3}.

D. {5; 3}.
tan x + m
nghịch biến trên khoảng
Câu 59. [2D1-3] Tìm giá trị thực của tham số m để hàm số y =
m tan x + 1
 π
0; .
4
A. (−∞; −1) ∪ (1; +∞). B. (−∞; 0] ∪ (1; +∞). C. [0; +∞).
D. (1; +∞).
Câu 60. Dãy số nào sau đây có giới hạn khác 0?
1
n+1
.
B. .
A.
n
n

C.

sin n
.
n

1
D. √ .

n

Câu 61. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. 2020.
C. log2 13.
D. 13.
Câu 62. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 12 năm.
C. 11 năm.
D. 13 năm.

Câu 63. Thể tích của khối lập phương có cạnh bằng a 2 √


2a3 2
A. 2a3 2.
.
D. V = a3 2.
B. V = 2a3 .
C.
3
Câu 64. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB)
√ bằng




a 6
A.
.
B. a 3.
C. 2a 6.
D. a 6.
2
Câu 65. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [1; 2].
B. (−∞; +∞).
C. [−1; 2).
D. (1; 2).
Câu 66. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (I) đúng.
B. Cả hai đều đúng.

C. Chỉ có (II) đúng.

D. Cả hai đều sai.

Câu 67. Bát diện đều thuộc loại
A. {5; 3}.
B. {3; 4}.

C. {3; 3}.


D. {4; 3}.
Trang 5/10 Mã đề 1


Câu 68.
√ [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i| = 1. Tìm giá trị lớn nhất
√ của |z|
A. 5.
B. 1.
C. 2.
D. 3.
Câu 69. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
C. Số đỉnh của khối chóp bằng số mặt của khối chóp.
D. Số cạnh của khối chóp bằng số mặt của khối chóp.
Câu 70. Tứ diện đều thuộc loại
A. {5; 3}.
B. {4; 3}.

C. {3; 3}.

D. {3; 4}.

Câu 71. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
D. 12.

A. 18.
B. 27.
C.
2
Câu 72. Cho hình chóp đều S .ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với đáy một góc 60◦ .
Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n. Thể
tích khối√chóp S .ABMN là



2a3 3
4a3 3
5a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
2
3
3
3
3a
Câu 73. [3] Cho hình chóp S .ABCD có đáy ABCD là hình vng cạnh a, S D =
, hình chiếu vng
2

góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Khoảng cách từ A đến mặt phẳng (S BD)
bằng

a
2a
a
a 2
A. .
B.
.
C. .
D.
.
3
3
4
3
Câu 74.
Z [1233d-2] Mệnh đề nào sau đây sai?

f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
B.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
Z

C.
[ f (x) − g(x)]dx =
f (x)dx − g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.

A.

Câu 75. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vng
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√

a3 3
a3 5
a3 5
a3 5
A.
.
B.
.
C.
.
D.
.
12
6
4
12

9t
Câu 76. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. Vô số.
C. 2.
D. 1.
1
Câu 77. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 3.
B. 1.
C. 4.
D. 2.
Câu 78. Khối đa diện đều loại {3; 4} có số mặt
A. 10.
B. 8.

C. 12.

D. 6.
Trang 6/10 Mã đề 1


Câu 79. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 2.

C. 3.
D. Vô nghiệm.
[ = 60◦ , S O
Câu 80. [3] Cho hình chóp S .ABCD có đáy ABCD là hình thoi tâm O, cạnh là a. Góc BAD
vng góc
√ Khoảng cách từ A đến (S
√ BC) bằng
√ với mặt đáy và S O = a.

a 57
a 57
2a 57
.
B.
.
C.
.
D. a 57.
A.
19
19
17
Câu 81. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 120 cm2 .
C. 160 cm2 .
D. 1200 cm2 .
Câu 82. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm. Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp

theo. Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi
ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó khơng rút tiền ra?
A. 10 năm.
B. 11 năm.
C. 14 năm.
D. 12 năm.
Câu 83. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 6 mặt.
C. 4 mặt.
Câu 84. Biểu thức nào sau đây khơng
√ 0 có nghĩa
−1
A. (−1) .
B. (− 2) .

D. 10 mặt.


−1.

−3

D. 0−1 .

Câu 85. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) √
bằng



3a
3a 58
3a 38
a 38
.
B.
.
C.
.
D.
.
A.
29
29
29
29
Câu 86. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một
nguyên hàm của f (x) trên khoảng (a; b). Khi đó
A. Cả ba câu trên đều sai.
B. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
C. F(x) = G(x) trên khoảng (a; b).
D. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
C.

d = 300 .
Câu 87. Cho khối lăng trụ đứng ABC.A0 B0C 0 có đáy ABC là tam giác vng tại A. BC = 2a, ABC
Độ dài cạnh bên CC 0 = 3a. Thể tích V √của khối lăng trụ đã cho. √

a3 3

3a3 3
A. V = 3a3 3.
B. V =
.
C. V =
.
D. V = 6a3 .
2
2
x−1
Câu 88. [1] Tập xác định của hàm số y = 2 là
A. D = R \ {1}.
B. D = R \ {0}.
C. D = (0; +∞).
D. D = R.
Câu 89. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 1202 m.
B. 2400 m.
C. 6510 m.
D. 1134 m.
Câu 90. [2]√Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8
A. m = ± 2.
B. m = ± 3.
C. m = ±3.
D. m = ±1.
Câu 91. Trong các khẳng định sau, khẳng định nào sai?
A. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
B. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.

Z
u0 (x)
C.
dx = log |u(x)| + C.
u(x)
Trang 7/10 Mã đề 1


D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Câu 92. [1] Tập
! xác định của hàm số y! = log3 (2x + 1) là
!
1
1
1
A. −∞; − .
B. −∞; .
C. − ; +∞ .
2
2
2

!
1
D.
; +∞ .
2

Câu 93. Dãy số nào có giới hạn bằng 0?!
n

−2
2
A. un = n − 4n.
B. un =
.
3

!n
6
D. un =
.
5

n3 − 3n
C. un =
.
n+1

d = 60◦ . Đường chéo
Câu 94. Cho lăng trụ đứng ABC.A0 B0C 0 có đáy là tam giác vng tại A, AC = a, ACB
BC 0 của mặt bên (BCC 0 B0 ) tạo với mặt phẳng (AA0C 0C) một góc 30◦ . Thể tích của khối lăng trụ ABC.A0 B0C 0





4a3 6
a3 6
2a3 6
3

.
B.
.
C. a 6.
.
A.
D.
3
3
3
Câu 95. [1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m > .
B. m < .
C. m ≥ .
D. m ≤ .
4
4
4
4
0 0 0 0
0
Câu 96.√ [2] Cho hình lâp phương
√ bằng
√ ABCD.A B C D cạnh a.√Khoảng cách từ C đến AC
a 6
a 3

a 6
a 6
A.
.
B.
.
C.
.
D.
.
3
2
7
2

Câu 97. Khối đa diện đều loại {5; 3} có số cạnh
A. 12.
B. 20.

C. 30.

D. 8.

Câu 98. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = − loga 2.
B. log2 a =
.
C. log2 a = loga 2.

D. log2 a =
.
loga 2
log2 a
Câu 99. [1-c] Giá trị của biểu thức
A. −4.

B. 4.

log7 16
log7 15 − log7

15
30

bằng
C. 2.

D. −2.

Câu 100. Trong các khẳng định sau, khẳng định nào sai?
A. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
C. Cả ba đáp án trên.

D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
d = 120◦ .
Câu 101. [2] Cho hình chóp S .ABC có S A = 3a và S A ⊥ (ABC). Biết AB = BC = 2a và ABC
Khoảng cách từ A đến mặt phẳng (S BC) bằng
3a

A. 3a.
B.
.
C. 4a.
D. 2a.
2
cos n + sin n
Câu 102. Tính lim
n2 + 1
A. −∞.
B. +∞.
C. 0.
D. 1.
Câu 103. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. −e2 .
B. −2e2 .
C. 2e2 .
D. 2e4 .
Câu 104. Cho khối chóp S .ABC
√ có đáy ABC là tam giác đều cạnh a. Hai mặt bên (S AB) và (S AC) cùng
vng góc
Thể tích khối chóp S .ABC √là
√ với đáy và S C = a 3.3 √

3
a 3
a 6
2a3 6
a3 3
A.

.
B.
.
C.
.
D.
.
4
12
9
2
Trang 8/10 Mã đề 1


Câu 105. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3 (x + y) =
log4 (x2 + y2 )?
A. 1.
B. Vô số.
C. 2.
D. 3.
Câu 106. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng
cách giữa

√ hai đường thẳng S B và AD bằng


a 2
a 2
.
B. a 3.

C. a 2.
D.
.
A.
3
2
!4x
!2−x
2
3
Câu 107. Tập các số x thỏa mãn


3
2
"
!
#
"
!
#
2
2
2
2
A.
; +∞ .
B. −∞; .
C. − ; +∞ .
D. −∞; .

5
3
3
5
Câu 108.! Dãy số nào sau đây có !giới hạn là 0?
n
n
5
4
A. − .
B.
.
3
e

!n
5
C.
.
3

!n
1
D.
.
3

Câu 109. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC)
một góc bằng 60◦ . Thể tích khối chóp S .ABC là √



a3 3
a3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
4
12
8
!2x−1
!2−x
3
3
Câu 110. Tập các số x thỏa mãn


5
5
A. (−∞; 1].
B. [3; +∞).
C. (+∞; −∞).

D. [1; +∞).
Câu 111. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 9 cạnh, 5 mặt. B. 6 đỉnh, 9 cạnh, 6 mặt. C. 5 đỉnh, 9 cạnh, 6 mặt. D. 6 đỉnh, 6 cạnh, 6 mặt.
Câu 112. Khối lập phương thuộc loại
A. {3; 4}.
B. {3; 3}.
log2 240 log2 15

Câu 113. [1-c] Giá trị biểu thức
log3,75 2 log60 2
A. 3.
B. 4.
2
x − 3x + 3
Câu 114. Hàm số y =
đạt cực đại tại
x−2
A. x = 0.
B. x = 1.
1
Câu 115. Hàm số y = x + có giá trị cực đại là
x
A. 2.
B. −2.

C. {4; 3}.

D. {5; 3}.

+ log2 1 bằng

C. −8.

D. 1.

C. x = 3.

D. x = 2.

C. −1.

D. 1.

Câu 116. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Hai mặt.
C. Năm mặt.

D. Ba mặt.

Câu 117. Mệnh đề nào sau đây sai?
A. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Z
B. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
!0
Z
C.
f (x)dx = f (x).

f (x)dx = F(x) + C.


D. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a; b).
Câu 118. Hàm số nào sau đây khơng có cực trị
1
A. y = x3 − 3x.
B. y = x + .
x

C. y =

x−2
.
2x + 1

D. y = x4 − 2x + 1.
Trang 9/10 Mã đề 1


Câu 119. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2. Gọi M, N là trung điểm các cạnh AB và CD.
Cho hình chữ nhật quay quanh MN ta được hình trụ trịn xoay có thể tích bằng
A. 8π.
B. 16π.
C. V = 4π.
D. 32π.
Câu 120. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Hai cạnh.
B. Ba cạnh.
C. Bốn cạnh.

D. Năm cạnh.


Câu 121. Cho số phức z thỏa mãn |z + 3| = 5 và |z − 2i| = |z −√2 − 2i|. Tính |z|.

D. |z| = 10.
A. |z| = 17.
B. |z| = 10.
C. |z| = 17.
Câu 122. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 0.
B. e2016 .
C. 1.
D. 22016 .
Câu 123. Giá trị của lim (3x2 − 2x + 1)
x→1
A. 1.
B. +∞.

C. 3.
log 2x
Câu 124. [3-1229d] Đạo hàm của hàm số y =

x2
1 − 2 ln 2x
1 − 4 ln 2x
1 − 2 log 2x
.
B. y0 = 3
.
C. y0 =
.

A. y0 =
3
x
x ln 10
2x3 ln 10
Câu 125. Khối đa diện đều loại {3; 3} có số mặt
A. 4.
B. 5.
C. 3.

D. 2.

D. y0 =

2x3

1
.
ln 10

D. 2.

Câu 126. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
11
9
A.
.
B. 5.
C. .
D. 7.

2
2
Câu 127. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều. C. Khối 12 mặt đều.
D. Khối tứ diện đều.
Câu 128. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 14.
B. ln 10.
C. ln 12.
D. ln 4.
Câu 129. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 4.
B. V = 6.
C. V = 3.
D. V = 5.
log 2x

Câu 130. [1229d] Đạo hàm của hàm số y =
x2
1 − 2 log 2x
1
1 − 4 ln 2x
1 − 2 ln 2x
A. y0 =
.
C. y0 = 3
.
D. y0 =

.
.
B. y0 = 3
3
x
x ln 10
2x ln 10
2x3 ln 10
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 10/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.

3.

D

C

4.

C


5.

B

6.

7. A

B

8. A

9. A

10.

C

11. A

12.

C

13. A

14.

C


15.

B

16.

B

17.

B

18.

B

19.

C

20.

21. A

22. A

23. A

24.


25. A

26. A

27.
29.

D

28.

D
B

31.

C

30.
C

B

32.

D
D

33.


D

34.

35.

D

36. A

37.

D

38.

39. A

D

D

40. A

41.

B

42.


D

43.

B

44.

D

45.

D

46.

47.

D

48.

49.

B

50. A

51.


B

52.

53.

B

54. A

55.

D

56. A

57.

D

58.

59.

D

60. A

61.


62.

C

B
D
C

D
B

64.

63. A

D

65.

B

66.

C

67.

B

68.


C

1


69.

70.

C

71. A
73.

72. A
74.

B

75.

D
B

78.

79.

B


80. A

81.

D
C

76.

77.

83.

C

82.

C
B

B
B

84.

D

85.


C

86.

D

87.

C

88.

D

89.

C

90. A

91.

C

92.

C

94.


C

93.

B
D

95.
97.

96. A

C

98.

D

100.

99. A
101.

B

B

102.

103. A


104.

C
B

105.

C

106.

D

107.

C

108.

D

110.

D

109.

D


111. A

112.

113.
115.

C
D

118.

B

122. A
124.
128. A
130.

123.

D

129. A
B

2

C
D


127. A

C

D

121.
125. A

B

126.

B

116.

B

117.
120.

114.

C




Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×