Free LATEX
BÀI TẬP TỐN THPT
(Đề thi có 11 trang)
Thời gian làm bài: 90 phút
Mã đề thi 1
Câu 1. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
A. 1.
B. −2 + 2 ln 2.
C. 4 − 2 ln 2.
Câu 2. Hàm số nào sau đây khơng có cực trị
1
x−2
A. y = x + .
B. y =
.
x
2x + 1
Câu 3. Giá trị của lim(2x2 − 3x + 1) là
x→1
A. 1.
B. 0.
D. e.
C. y = x3 − 3x.
D. y = x4 − 2x + 1.
C. +∞.
D. 2.
Câu 4. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ nhất
của |z + 2 + i|
√
√
√
√
12 17
.
D. 68.
A. 34.
B. 5.
C.
17
Câu 5. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn
[1; e]. Giá trị của T = M + m bằng
2
2
B. T = e + .
C. T = e + 1.
D. T = e + 3.
A. T = 4 + .
e
e
Câu 6. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = 2 − x2 và y = x.
9
11
A. 7.
B. .
C. 5.
D.
.
2
2
√
Câu 7. [1] Biết log6 a = 2 thì log6 a bằng
A. 108.
B. 36.
C. 6.
D. 4.
Câu 8. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = [2; 1].
2
C. D = R.
D. D = R \ {1; 2}.
Câu 9. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1 (9a2 + b2 + 1) + log6ab+1 (3a + 2b + 1) = 2. Giá trị
của a + 2b bằng
7
5
B. 9.
C. 6.
D. .
A. .
2
2
Câu 10. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.
B. 4.
Câu 11. Giá trị giới hạn lim (x − x + 7) bằng?
x→−1
A. 0.
B. 9.
C. 2.
D. 3.
C. 7.
D. 5.
2
Câu 12. Trong các khẳng định sau, khẳng định nào sai?
A. Z
F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
u0 (x)
B.
dx = log |u(x)| + C.
u(x)
C. F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
D. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
Trang 1/11 Mã đề 1
Câu 13. Cho hàm số y = x3 − 2x2 + x + 1. !Mệnh đề nào dưới đây đúng?
1
B. Hàm số nghịch biến trên khoảng (1; +∞).
A. Hàm số nghịch biến trên khoảng ; 1 .
3!
!
1
1
C. Hàm số đồng biến trên khoảng ; 1 .
D. Hàm số nghịch biến trên khoảng −∞; .
3
3
Câu 14. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by =
Giá trị nhỏ nhất của biểu thức P = x + 2y thuộc tập nào dưới
!
"
!
" đây?
5
5
;3 .
D. 2; .
A. [3; 4).
B. (1; 2).
C.
2
2
√
ab.
2
Câu 15. Tính
√
√ mơ đun của số phức z√4biết (1 + 2i)z = 3 + 4i.
B. |z| = 5.
C. |z| = 5.
D. |z| = 2 5.
A. |z| = 5.
x2 − 12x + 35
Câu 16. Tính lim
x→5
25 − 5x
2
2
D. − .
A. +∞.
B. −∞.
C. .
5
5
Câu 17. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
D. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngồi ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
√
Câu 18. √Xác định phần ảo của số phức z = ( 2 + 3i)2 √
A. −6 2.
B. −7.
C. 6 2.
D. 7.
2
x −9
Câu 19. Tính lim
x→3 x − 3
A. 3.
B. −3.
C. +∞.
D. 6.
Câu 20. Phát biểu nào sau đây là sai?
1
A. lim = 0.
n
C. lim qn = 0 (|q| > 1).
1
= 0.
nk
D. lim un = c (un = c là hằng số).
B. lim
Câu 21. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 6 cạnh, 4 mặt. B. 3 đỉnh, 3 cạnh, 3 mặt. C. 4 đỉnh, 6 cạnh, 4 mặt. D. 4 đỉnh, 8 cạnh, 4 mặt.
!
!
!
4x
1
2
2016
. Tính tổng T = f
+f
+ ··· + f
Câu 22. [3] Cho hàm số f (x) = x
4 +2
2017
2017
2017
2016
.
A. T = 2016.
B. T = 1008.
C. T = 2017.
D. T =
2017
√
3
4
Câu 23. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
2
7
5
5
B. a 3 .
C. a 3 .
D. a 8 .
A. a 3 .
Câu 24. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
A. 8 mặt.
B. 4 mặt.
C. 10 mặt.
D. 6 mặt.
Câu 25. [2] Cho chóp đều S .ABCD có đáy là hình vng tâm O cạnh a, S A = a. Khoảng cách từ điểm O
đến (S AB) bằng
√
√
√
√
a 6
A. 2a 6.
B. a 6.
C.
.
D. a 3.
2
Câu 26. Phát biểu nào sau đây là sai?
A. lim qn = 1 với |q| > 1.
B. lim un = c (Với un = c là hằng số).
1
1
C. lim k = 0 với k > 1.
D. lim √ = 0.
n
n
Trang 2/11 Mã đề 1
√
Câu 27. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) bằng
√
√
√
3a 58
a 38
3a
3a 38
.
B.
.
C.
.
D.
.
A.
29
29
29
29
Câu 28. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0 e0,195t , trong đó Q0
là số lượng vi khuẩn ban đầu. Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng
vi khuẩn đạt 100.000 con?
A. 15, 36.
B. 24.
C. 3, 55.
D. 20.
1
Câu 29. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x
+
1
A. xy0 = ey + 1.
B. xy0 = −ey + 1.
C. xy0 = ey − 1.
D. xy0 = −ey − 1.
3
Câu 30. [2-c] Giá trị lớn nhất của hàm số f (x) = e x −3x+3 trên đoạn [0; 2] là
A. e3 .
B. e2 .
C. e5 .
D. e.
Câu 31. [3] Cho khối chóp S .ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC). Gọi H, K lần lượt là hình chiếu của A lên S B, S C. Khoảng cách từ điểm K đến mặt phẳng
(S AB)
8a
a
5a
2a
A.
.
B. .
C.
.
D.
.
9
9
9
9
Câu 32. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh của khối chóp bằng số mặt của khối chóp.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
D. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
Câu 33. Tập các số x thỏa mãn log0,4 (x − 4) + 1 ≥ 0 là
A. [6, 5; +∞).
B. (4; +∞).
C. (4; 6, 5].
cos n + sin n
Câu 34. Tính lim
n2 + 1
A. +∞.
B. −∞.
C. 0.
D. (−∞; 6, 5).
D. 1.
Câu 35. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 6 mặt.
C. 9 mặt.
D. 4 mặt.
Câu 36. Cho hình√ chóp S .ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥
(ABCD),√S D = a 5. Thể tích khối chóp S .ABCD là
√
√
√
a3 5
a3 15
a3 6
3
A.
C.
.
B. a 6.
.
D.
.
3
3
3
2n − 3
Câu 37. Tính lim 2
bằng
2n + 3n + 1
A. 0.
B. +∞.
C. −∞.
D. 1.
Câu 38. [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng. Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ
liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay. Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó. Hỏi số
tiền mỗi tháng ơng ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A. 2, 22 triệu đồng.
B. 2, 20 triệu đồng.
C. 2, 25 triệu đồng.
D. 3, 03 triệu đồng.
log(mx)
Câu 39. [1226d] Tìm tham số thực m để phương trình
= 2 có nghiệm thực duy nhất
log(x + 1)
A. m < 0.
B. m ≤ 0.
C. m < 0 ∨ m = 4.
D. m < 0 ∨ m > 4.
Trang 3/11 Mã đề 1
Câu 40. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i|. Biết
rằng, |z + 1 − i| nhỏ nhất. Tính P = ab.
9
23
13
5
B.
.
C. −
.
D.
.
A. − .
16
25
100
100
4x + 1
Câu 41. [1] Tính lim
bằng?
x→−∞ x + 1
A. 2.
B. −4.
C. −1.
D. 4.
Câu 42. Cho f (x) = sin2 x − cos2 x − x. Khi đó f 0 (x) bằng
A. −1 + sin x cos x.
B. −1 + 2 sin 2x.
C. 1 + 2 sin 2x.
!
1
1
1
Câu 43. Tính lim
+
+ ··· +
1.2 2.3
n(n + 1)
3
A. 0.
B. .
C. 1.
2
D. 1 − sin 2x.
D. 2.
Câu 44. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
0 0
ABC.A0 B
C là
√
√
3
a3 3
a3
a 3
.
B.
.
C. a3 .
D.
.
A.
2
6
3
1
Câu 45. [1] Giá trị của biểu thức log √3
bằng
10
1
1
B. − .
C. −3.
D. 3.
A. .
3
3
Câu 46. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. n3 lần.
B. n2 lần.
C. n lần.
D. 3n3 lần.
√
Câu 47. [2] Thiết diện qua trục của một hình nón trịn xoay là tam giác đều có diện tích bằng a2 3. Thể
tích khối nón đã
√
√ cho là
√
√
πa3 3
πa3 6
πa3 3
πa3 3
A. V =
.
B. V =
.
C. V =
.
D. V =
.
2
6
6
3
1
Câu 48. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e + 1.
B. xy = −e − 1.
C. xy0 = ey − 1.
D. xy0 = ey + 1.
Câu 49. [2]√Tìm m để giá trị lớn nhất√của hàm số y = 2x3 + (m2 + 1)2 x trên [0; 1] bằng 8
A. m = ± 3.
B. m = ± 2.
C. m = ±3.
D. m = ±1.
Câu 50. [1] Cho a > 0, a , 1. Giá trị của biểu thức log 1a a2 bằng
1
1
C. − .
A. −2.
B. .
2
2
D. 2.
Câu 51. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2 (2 x +3)−log2 (2020−21−x )
A. log2 2020.
B. 13.
C. log2 13.
D. 2020.
Câu 52. [2] Cho hình chóp S .ABCD có đáy là hình vng cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng
√
√
√
a 6
a 6
a 6
A.
.
B.
.
C.
.
D. a 6.
2
6
3
Câu 53. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. 1.
B. 3.
C. 2.
D. Vô nghiệm.
1
Câu 54. [2] Tập xác định của hàm số y = (x − 1) 5 là
A. D = (−∞; 1).
B. D = R.
C. D = R \ {1}.
D. D = (1; +∞).
Trang 4/11 Mã đề 1
Câu 55.! Dãy số nào sau đây có giới! hạn là 0?
n
n
1
5
A.
.
B. − .
3
3
!n
4
C.
.
e
Câu 56. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
A. Bốn mặt.
B. Hai mặt.
C. Năm mặt.
!n
5
D.
.
3
D. Ba mặt.
x
Câu 57. Tính diện tích hình phẳng
√ giới hạn bởi các đường y = xe , y = 0, x = 1.
1
3
3
A. .
B.
.
C. .
D. 1.
2
2
2
Câu 58. [1] Giá trị của biểu thức 9log3 12 bằng
A. 24.
B. 144.
C. 2.
D. 4.
[ = 60◦ , S A ⊥ (ABCD).
Câu 59. Cho hình chóp S .ABCD có đáy ABCD là hình thoi cạnh a và góc BAD
Biết rằng√ khoảng cách từ A đến cạnh
√
√ S C là a. Thể tích khối chóp S .ABCD là
3
3
√
a 2
a 3
a3 2
3
.
B.
.
C. a 3.
D.
.
A.
4
6
12
1
Câu 60. Tìm tất cả các khoảng đồng biến của hàm số y = x3 − 2x2 + 3x − 1.
3
A. (−∞; 1) và (3; +∞). B. (−∞; 3).
C. (1; +∞).
D. (1; 3).
Câu 61. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
A. 8 đỉnh, 12 cạnh, 8 mặt.
B. 8 đỉnh, 10 cạnh, 6 mặt.
C. 8 đỉnh, 12 cạnh, 6 mặt.
D. 6 đỉnh, 12 cạnh, 8 mặt.
Câu 62. [2] Cho hàm số f (x) = 2 x .5 x . Giá trị của f 0 (0) bằng
A. f 0 (0) = ln 10.
B. f 0 (0) = 1.
C. f 0 (0) = 10.
Câu 63. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = −3.
C. m = 0.
D. f 0 (0) =
1
.
ln 10
D. m = −2.
Câu 64. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 24 m.
B. 12 m.
C. 8 m.
D. 16 m.
Câu 65. Dãy số nào có giới hạn bằng 0?
!n
6
2
.
A. un = n − 4n.
B. un =
5
n3 − 3n
C. un =
.
n+1
!n
−2
D. un =
.
3
Câu 66.
đề nào sau đây
Z [1233d-2] Mệnh Z
Z sai?
[ f (x) − g(x)]dx =
A.
f (x)dx −
g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
f 0 (x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R.
Z
Z
Z
C.
[ f (x) + g(x)]dx =
f (x)dx + g(x)dx, với mọi f (x), g(x) liên tục trên R.
Z
Z
D.
k f (x)dx = k
f (x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R.
B.
Câu 67. Khối đa diện đều loại {3; 3} có số đỉnh
A. 4.
B. 3.
C. 2.
D. 5.
a
1
Câu 68. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 7.
B. 2.
C. 4.
D. 1.
Trang 5/11 Mã đề 1
Câu 69. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
. Khi đó thể tích khối lăng trụ là
BC là
4
√
√
√
√
a3 3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
24
36
12
6
Câu 70. [2] Cho hình chóp tứ giác S .ABCD có tất cả các cạnh đều bằng a. Khoảng cách từ D đến đường
thẳng S√B bằng
a
a
a 3
.
B. .
C. a.
D. .
A.
2
3
2
Câu 71. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = a.
B. f (x) có giới hạn hữu hạn khi x → a.
x→a
x→a
C. lim f (x) = f (a).
D. lim+ f (x) = lim− f (x) = +∞.
x→a
x→a
x→a
x
9
với x ∈ R và hai số a, b thỏa mãn a + b = 1. Tính f (a) + f (b)
+3
1
A. 1.
B. 2.
C. −1.
D. .
2
1
Câu 73. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình |x−1| = 3m − 2 có nghiệm duy
3
nhất?
A. 3.
B. 2.
C. 1.
D. 4.
Câu 72. [2-c] Cho hàm số f (x) =
9x
Câu 74. Tìm m để hàm số y = x3 − 3mx2 + 3m2 có 2 điểm cực trị.
A. m > 0.
B. m < 0.
C. m , 0.
D. m = 0.
Câu 75. Khối đa diện loại {4; 3} có tên gọi là gì?
A. Khối lập phương.
B. Khối bát diện đều.
D. Khối 12 mặt đều.
C. Khối tứ diện đều.
Câu 76. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. −3.
B. 0.
C. −6.
D. 3.
1
Câu 77. Hàm số y = x + có giá trị cực đại là
x
A. −1.
B. −2.
C. 1.
D. 2.
Câu 78. [2D1-3] Tìm giá trị của tham số m để f (x) = −x3 + 3x2 + (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1.
5
5
A. m ≥ 0.
B. − < m < 0.
C. m ≤ 0.
D. m > − .
4
4
Câu 79. [1-c] Giá trị biểu thức log2 36 − log2 144 bằng
A. −4.
B. 2.
C. 4.
D. −2.
Câu 80. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (−1; 0).
C. (−∞; 0) và (1; +∞). D. (0; 1).
Câu 81. [1-c] Giá trị của biểu thức
A. 2.
B. 4.
2x + 1
Câu 82. Tính giới hạn lim
x→+∞ x + 1
A. 1.
B. 2.
log7 16
log7 15 − log7
15
30
bằng
C. −4.
C.
1
.
2
D. −2.
D. −1.
Trang 6/11 Mã đề 1
Câu 83. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1 + 2i| = |z + 3 − 4i|. Tìm giá trị nhỏ nhất của
mơđun √
z.
√
√
√
5 13
.
B. 26.
A.
C. 2 13.
D. 2.
13
x−2 x−1
x
x+1
Câu 84. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham
x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3).
B. [−3; +∞).
C. (−3; +∞).
D. (−∞; −3].
Câu 85. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F 0 (x) = f (x).
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số.
A. Câu (III) sai.
B. Câu (II) sai.
C. Không có câu nào D. Câu (I) sai.
sai.
Câu 86. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất của hàm số. Khi đó tổng
√
√
√M + m
C. 8 2.
D. 8 3.
A. 16.
B. 7 3.
Câu 87. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích hình
phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 2.
C. 0, 3.
D. 0, 4.
Câu 88. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng
√
√
√
a b2 + c2
c a2 + b2
b a2 + c2
abc b2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2
m
ln2 x
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
Câu 89. [3] Biết rằng giá trị lớn nhất của hàm số y =
x
e
số tự nhiên. Tính S = m2 + 2n3
A. S = 32.
B. S = 135.
C. S = 24.
D. S = 22.
Câu 90.
! định nào sau đây là sai?
Z Các khẳng
0
f (x)dx = f (x).
A.
Z
C.
f (x)dx = F(x) + C ⇒
Z
B.
Z
f (t)dt = F(t) + C. D.
!4x
!2−x
2
3
≤
là
Câu 91. Tập các số x thỏa mãn
3 # 2
"
!
2
2
A.
; +∞ .
B. −∞; .
5
5
Z
k f (x)dx = k
Z
f (x)dx, k là hằng số.
Z
f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
#
2
C. −∞; .
3
"
!
2
D. − ; +∞ .
3
Câu 92. [2-c] Giá trị lớn nhất của hàm số y = ln(x2 + x + 2) trên đoạn [1; 3] là
A. ln 10.
B. ln 14.
C. ln 4.
D. ln 12.
Câu 93. Cho z là nghiệm của phương trình√ x2 + x + 1 = 0. Tính P = z4 + 2z3 − z
√
−1 − i 3
−1 + i 3
A. P = 2i.
B. P =
.
C. P = 2.
D. P =
.
2
2
Trang 7/11 Mã đề 1
Câu 94.
[12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23
√ i
h
3
có ít nhất một nghiệm thuộc đoạn 1; 3
A. m ∈ [−1; 0].
B. m ∈ [0; 1].
C. m ∈ [0; 2].
q
x+ log23 x + 1+4m−1 = 0
D. m ∈ [0; 4].
Câu 95. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a =
.
B. log2 a =
.
C. log2 a = loga 2.
D. log2 a = − loga 2.
log2 a
loga 2
1 − 2n
Câu 96. [1] Tính lim
bằng?
3n + 1
1
2
2
A. .
B. .
C. 1.
D. − .
3
3
3
Câu 97. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số mặt của khối chóp bằng số cạnh của khối chóp.
B. Số đỉnh của khối chóp bằng 2n + 1.
C. Số cạnh của khối chóp bằng 2n.
D. Số mặt của khối chóp bằng 2n+1.
Câu 98. [1] Đạo hàm của làm số y = log x là
1
ln 10
1
1
B. y0 =
.
C. y0 =
.
D.
.
A. y0 = .
x
x ln 10
x
10 ln x
Câu 99. Cho hai đường thẳng phân biệt d và d0 đồng phẳng. Có bao nhiêu phép đối xứng qua mặt phẳng
biến d thành d0 ?
A. Có hai.
B. Khơng có.
C. Có một.
D. Có một hoặc hai.
Câu 100. Tứ diện đều thuộc loại
A. {3; 3}.
B. {4; 3}.
C. {5; 3}.
D. {3; 4}.
Câu 101. Bát diện đều thuộc loại
A. {3; 4}.
B. {3; 3}.
C. {5; 3}.
D. {4; 3}.
1
2mx + 1
trên đoạn [2; 3] là − khi m nhận giá trị bằng
Câu 102. Giá trị lớn nhất của hàm số y =
m−x
3
A. −5.
B. 0.
C. −2.
D. 1.
Câu 103. Hàm số y = x3 − 3x2 + 4 đồng biến trên:
A. (0; 2).
B. (0; +∞).
C. (−∞; 2).
D. (−∞; 0) và (2; +∞).
log 2x
Câu 104. [3-1229d] Đạo hàm của hàm số y =
là
x2
1
1 − 4 ln 2x
1 − 2 log 2x
1 − 2 ln 2x
0
A. y0 = 3
.
B. y0 = 3
.
C. y0 =
.
D.
y
=
.
x ln 10
2x ln 10
2x3 ln 10
x3
2n + 1
Câu 105. Tìm giới hạn lim
n+1
A. 3.
B. 0.
C. 1.
D. 2.
2
2
2
1 + 2 + ··· + n
Câu 106. [3-1133d] Tính lim
n3
1
2
A. .
B. 0.
C. .
D. +∞.
3
3
Câu 107. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 12 đỉnh, 30 cạnh, 20 mặt.
B. 20 đỉnh, 30 cạnh, 20 mặt.
C. 20 đỉnh, 30 cạnh, 12 mặt.
D. 12 đỉnh, 30 cạnh, 12 mặt.
Câu 108. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 3.
B. V = 6.
C. V = 4.
D. V = 5.
Trang 8/11 Mã đề 1
Câu 109. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
ln 2
1
B. 2.
C.
.
D. 1.
A. .
2
2
Z 2
ln(x + 1)
Câu 110. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b
x2
1
A. −3.
B. 3.
C. 1.
D. 0.
t
9
Câu 111. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao
9 + m2
cho f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. Vô số.
B. 0.
C. 1.
D. 2.
Câu 112. Hàm số y = −x3 + 3x − 5 đồng biến trên khoảng nào dưới đây?
A. (1; +∞).
B. (−∞; 1).
C. (−∞; −1).
D. (−1; 1).
Câu 113. [3-1211h] Cho khối chóp đều S .ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ . Tính thể tích của khối chóp S√
.ABC theo a
√
√
a3 15
a3 15
a3 5
a3
.
B.
.
C.
.
D.
.
A.
3
5
25
25
Câu 114. [2-c] Cho a = log27 5, b = log8 7, c = log2 3. Khi đó log12 35 bằng
3b + 2ac
3b + 3ac
3b + 3ac
3b + 2ac
.
B.
.
C.
.
D.
.
A.
c+3
c+2
c+2
c+1
1 − xy
Câu 115. [12210d] Xét các số thực dương x, y thỏa mãn log3
= 3xy + x + 2y − 4. Tìm giá trị nhỏ
x + 2y
nhất Pmin của P√ = x + y.
√
√
√
2 11 − 3
9 11 + 19
18 11 − 29
9 11 − 19
A. Pmin =
.
B. Pmin =
. C. Pmin =
. D. Pmin =
.
3
9
21
9
Câu 116. Trong các khẳng định sau, khẳng định nào sai?
A. Cả ba đáp án trên.
B. Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C. F(x) = x2 là một nguyên hàm của hàm số f (x) = 2x.
√
D. F(x) = x là một nguyên hàm của hàm số f (x) = 2 x.
x−1
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
√ đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB
√
√ có độ dài bằng
A. 6.
B. 2.
C. 2 3.
D. 2 2.
x+3
Câu 118. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y =
nghịch biến trên khoảng
x−m
(0; +∞)?
A. 1.
B. Vô số.
C. 2.
D. 3.
Câu 117. [3-1214d] Cho hàm số y =
Câu 119. Cho z1 , z2 là hai nghiệm của phương trình z2 + 3z + 7 = 0. Tính P = z1 z2 (z1 + z2 )
A. P = −21.
B. P = 10.
C. P = 21.
D. P = −10.
log2 240 log2 15
Câu 120. [1-c] Giá trị biểu thức
−
+ log2 1 bằng
log3,75 2 log60 2
A. 3.
B. 4.
C. 1.
D. −8.
π π
Câu 121. Cho hàm số y = 3 sin x − 4 sin3 x. Giá trị lớn nhất của hàm số trên khoảng − ;
2 2
A. −1.
B. 1.
C. 7.
D. 3.
Câu 122. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2 − 3)e x trên đoạn [0; 2].
Giá trị của biểu thức P = (m2 − 4M)2019
A. 22016 .
B. 0.
C. e2016 .
D. 1.
Trang 9/11 Mã đề 1
Câu 123. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Cả hai câu trên đúng. B. Cả hai câu trên sai.
C. Chỉ có (II) đúng.
D. Chỉ có (I) đúng.
Câu 124. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng. Biết rằng nếu
không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi
cho tháng tiếp theo. Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền khơng ít hơn 110 triệu đồng
(cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó khơng rút tiền và lãi suất khơng thay đổi?
A. 16 tháng.
B. 17 tháng.
C. 15 tháng.
D. 18 tháng.
Câu 125. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
D. 27.
A. 18.
B. 12.
C.
2
Câu 126. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1 + log(1 + 3) + log(1 + 3 + 5) + · · · +
log(1 + 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
A. (2; 4; 3).
B. (2; 4; 6).
C. (1; 3; 2).
D. (2; 4; 4).
Câu 127. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
A. 9 mặt.
B. 4 mặt.
C. 6 mặt.
D. 3 mặt.
Câu 128.
√cạnh bằng a
√
√
√ Thể tích của tứ diện đều
3
3
a 2
a3 2
a3 2
a 2
.
B.
.
C.
.
D.
.
A.
6
12
2
4
Câu 129. Nhị thập diện đều (20 mặt đều) thuộc loại
A. {5; 3}.
B. {4; 3}.
C. {3; 4}.
D. {3; 5}.
1
Câu 130. [2D1-3] Cho hàm số y = − x3 + mx2 + (3m + 2)x + 1. Tìm giá trị của tham số m để hàm số nghịch
3
biến trên R.
A. −2 ≤ m ≤ −1.
B. −2 < m < −1.
C. (−∞; −2] ∪ [−1; +∞). D. (−∞; −2) ∪ (−1; +∞).
- - - - - - - - - - HẾT- - - - - - - - - -
Trang 10/11 Mã đề 1
ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1.
3.
D
2.
B
4.
5.
D
6.
7.
D
8.
9.
D
10.
11.
B
12.
13. A
15.
B
B
C
B
C
D
B
14.
C
16.
C
17.
D
18.
C
19.
D
20.
C
C
21.
22.
24.
23. A
25.
B
26. A
27.
B
28. A
29.
32.
C
33.
36.
37. A
38. A
D
43.
42.
C
D
C
B
44. A
C
B
46. A
47.
49.
B
40.
C
41.
C
34.
35. A
39.
D
30.
C
31. A
45.
B
D
48.
C
50. A
B
51.
C
52.
53.
C
54.
D
56.
D
55. A
57.
D
58.
59. A
61.
B
B
60. A
62. A
C
63.
D
64.
D
65.
D
66.
D
67. A
68. A
1
69.
C
70.
71.
C
72. A
73.
C
74.
75. A
77.
78.
B
D
81.
C
80.
B
82.
B
85.
C
86. A
87.
C
88. A
D
91.
93.
92.
D
C
98.
D
99.
102.
103.
D
104. A
105.
D
106. A
C
B
C
108.
B
110. A
111.
D
112.
C
D
114.
115. A
117.
B
100. A
101. A
113.
D
96.
B
107.
B
94. A
C
97.
C
119. A
D
118.
D
120.
D
122.
B
124. A
125. A
126.
129.
B
130. A
2
C
116.
123. A
128.
D
90.
89. A
121.
D
84.
83. A
109.
C
76. A
79.
95.
C
B
B
D