Tải bản đầy đủ (.pdf) (13 trang)

Đề ôn toán thptqg (152)

Bạn đang xem bản rút gọn của tài liệu. Xem và tải ngay bản đầy đủ của tài liệu tại đây (152.87 KB, 13 trang )

TỐN PDF LATEX

TRẮC NGHIỆM ƠN THI MƠN TỐN THPT

(Đề thi có 10 trang)

Thời gian làm bài: 90 phút (Khơng kể thời gian phát đề)
Mã đề thi 1

12 + 22 + · · · + n2
Câu 1. [3-1133d] Tính lim
n3
1
A. .
B. 0.
3

C.

2
.
3

Câu 2. Tập xác định của hàm số f (x) = −x3 + 3x2 − 2 là
A. [1; 2].
B. [−1; 2).
C. (−∞; +∞).
Câu 3. Khối đa diện đều loại {5; 3} có số cạnh
A. 8.
B. 20.
2n − 3


Câu 4. Tính lim 2
bằng
2n + 3n + 1
A. 0.
B. 1.

D. +∞.
D. (1; 2).

C. 30.

D. 12.

C. −∞.

D. +∞.

Câu 5. Hàm số y = −x3 + 3x2 − 1 đồng biến trên khoảng nào dưới đây?
A. (2; +∞).
B. (−∞; 1).
C. R.

D. (0; 2).

x2
Câu 6. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x trên đoạn [−1; 1]. Khi đó
e
1
1
A. M = e, m = 1.

B. M = , m = 0.
C. M = e, m = .
D. M = e, m = 0.
e
e


2

1

3i lần lượt l√
Câu 7. Phần thực √
và phần ảo của số phức
z
=


A. Phần thực là 2 −√1, phần ảo là − √3.
B. Phần thực là √2 − 1, phần ảo là √3.
D. Phần thực là 2, phần ảo là 1 − 3.
C. Phần thực là 1 − 2, phần ảo là − 3.
Câu 8. Tính lim
A. 1.

7n2 − 2n3 + 1
3n3 + 2n2 + 1
B. 0.

C.


7
.
3

2
D. - .
3

Câu 9. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b). Giả sử G(x) cũng là một nguyên
hàm của f (x) trên khoảng (a; b). Khi đó
A. G(x) = F(x) − C trên khoảng (a; b), với C là hằng số.
B. Cả ba câu trên đều sai.
C. F(x) = G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số.
D. F(x) = G(x) trên khoảng (a; b).
x−1 y z+1
= =

2
1
−1
mặt phẳng (P) : 2x − y + 2z − 1 = 0. Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ
nhất.
A. 2x − y + 2z − 1 = 0.
B. 2x + y − z = 0.
C. 10x − 7y + 13z + 3 = 0.
D. −x + 6y + 4z + 5 = 0.

Câu 10. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có phương trình


1
Câu 11. [2D1-3] Tìm giá trị của tham số m để hàm số y = − x3 − mx2 − (m + 6)x + 1 ln đồng biến trên
3

một đoạn có độ dài bằng 24.
A. m = 4.
B. −3 ≤ m ≤ 4.
C. m = −3.
D. m = −3, m = 4.
Câu 12. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
A. 3n3 lần.
B. n lần.
C. n3 lần.
D. n2 lần.
Trang 1/10 Mã đề 1


Câu 13.
Z Trong cácα+1khẳng định sau, khẳng định nào sai? Z
x
1
A.
xα dx =
+ C, C là hằng số.
B.
dx = ln |x| + C, C là hằng số.
α+1
Z
Z x
C.


dx = x + C, C là hằng số.

0dx = C, C là hằng số.

D.




Câu 14. [12215d] Tìm m để phương trình 4 x+ 1−x − 4.2 x+ 1−x − 3m + 4 = 0 có nghiệm
3
9
3
A. m ≥ 0.
B. 0 ≤ m ≤ .
C. 0 ≤ m ≤ .
D. 0 < m ≤ .
4
4
4
Câu 15. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
B. Với mọi x ∈ (a; b), ta có f 0 (x) = F(x).
C. Với mọi x ∈ (a; b), ta có F 0 (x) = f (x), ngoài ra F 0 (a+ ) = f (a) và F 0 (b− ) = f (b).
D. Với mọi x ∈ [a; b], ta có F 0 (x) = f (x).
2

2


Câu 16. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
A. d song song với (P).
B. d nằm trên P.
C. d ⊥ P.
D. d nằm trên P hoặc d ⊥ P.
Câu 17. [3-1213h] Hình hộp chữ nhật khơng có nắp có thể tích 3200 cm3 , tỷ số giữa chiều cao và chiều
rộng bằng 2. Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
A. 160 cm2 .
B. 120 cm2 .
C. 1200 cm2 .
D. 160 cm2 .
√3
4
Câu 18. [1-c] Cho a là số thực dương .Giá trị của biểu thức a 3 : a2 bằng
7
5
2
5
B. a 3 .
C. a 3 .
D. a 3 .
A. a 8 .
Câu 19. Khối đa diện đều loại {3; 4} có số cạnh
A. 8.
B. 12.

C. 10.

D. 6.


Câu 20. [2]√Tìm m để giá trị lớn nhất của hàm số y = 2x3 + (m2√+ 1)2 x trên [0; 1] bằng 8
A. m = ± 3.
B. m = ±1.
C. m = ± 2.
D. m = ±3.
1
Câu 21. [3-12217d] Cho hàm số y = ln
. Trong các khẳng định sau đây, khẳng định nào đúng?
x+1
0
y
0
y
A. xy = −e − 1.
B. xy = e + 1.
C. xy0 = −ey + 1.
D. xy0 = ey − 1.
Câu 22. Khối đa diện đều loại {4; 3} có số cạnh
A. 30.
B. 10.
C. 12.
D. 20.
x−2 x−1
x
x+1
Câu 23. [4-1212d] Cho hai hàm số y =
+
+
+
và y = |x + 1| − x − m (m là tham

x−1
x
x+1 x+2
số thực) có đồ thị lần lượt là (C1 ) và (C2 ). Tập hợp tất cả các giá trị của m để (C1 ) cắt (C2 ) tại đúng 4 điểm
phân biệt là
A. (−∞; −3].
B. (−∞; −3).
C. (−3; +∞).
D. [−3; +∞).

Câu 24. Xác định phần ảo của số phức z = ( 2 + 3i)2 √

A. 7.
B. −7.
C. 6 2.
D. −6 2.
Câu 25. Cho hàm số f (x) xác định trên khoảng K chưa a. Hàm số f (x) liên tục tại a nếu
A. lim+ f (x) = lim− f (x) = +∞.
B. lim+ f (x) = lim− f (x) = a.
x→a

x→a

C. f (x) có giới hạn hữu hạn khi x → a.
Câu 26. Khối đa diện đều loại {3; 3} có số đỉnh
A. 5.
B. 2.

x→a


x→a

D. lim f (x) = f (a).
x→a

C. 3.

D. 4.

Câu 27. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s). Tính quãng đường chất điểm
đó đi được từ thời điểm t = 0(s) đến thời điểm t = 4(s).
A. 24 m.
B. 12 m.
C. 16 m.
D. 8 m.
Trang 2/10 Mã đề 1


Câu 28. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vng góc chung của hai
x+1 y−4 z−4
x−2 y−3 z+4
đường thẳng d :
=
=
và d0 :
=
=
2
3
−5

3
−2
−1
x−2 y+2 z−3
x y z−1
.
B.
=
=
.
A. = =
1 1
1
2
2
2
x y−2 z−3
x−2 y−2 z−3
=
=
.
D. =
=
.
C.
2
3
4
2
3

−1
1
Câu 29. [12214d] Với giá trị nào của m thì phương trình |x−2| = m − 2 có nghiệm
3
A. 2 ≤ m ≤ 3.
B. 0 ≤ m ≤ 1.
C. 0 < m ≤ 1.
D. 2 < m ≤ 3.
Câu 30. [2] Cho hình hộp chữ nhật ABCD.A0 B0C 0 D0 có AB = a, AD = b, AA0 = c. Khoảng cách từ điểm A
0
đến đường
√ thẳng BD bằng



a b2 + c2
abc b2 + c2
c a2 + b2
b a2 + c2
A. √
.
B. √
.
C. √
.
D. √
.
a2 + b2 + c2
a2 + b2 + c2
a2 + b2 + c2

a2 + b2 + c2
Câu 31. Xét hai câu sau
Z
Z
Z
(I)
( f (x) + g(x))dx =
f (x)dx +
g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên
hàm tương ứng của hàm số f (x), g(x).
(II) Mỗi nguyên hàm của a. f (x) là tích của a với một nguyên hàm của f (x).
Trong hai câu trên
A. Chỉ có (II) đúng.

B. Cả hai câu trên sai.

C. Cả hai câu trên đúng. D. Chỉ có (I) đúng.

Câu 32. Biểu diễn hình học của số phức z = 4 + 8i là điểm nào trong các điểm sau đây?
A. A(4; −8).
B. A(−4; 8).
C. A(4; 8).
D. A(−4; −8)(.
Câu 33. Cho hàm số y = x3 − 3x2 − 1. Mệnh đề nào sau đây đúng?
A. Hàm số nghịch biến trên khoảng (1; +∞).
B. Hàm số nghịch biến trên khoảng (0; 1).
C. Hàm số nghịch biến trên khoảng (−∞; 0).
D. Hàm số đồng biến trên khoảng (1; 2).
Câu 34. Cho hình chóp S .ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông
cân tại S√, (S AD) ⊥ (ABCD). Thể√tích khối chóp S .ABCD là√


a3 5
a3 5
a3 5
a3 3
A.
.
B.
.
C.
.
D.
.
6
4
12
12
Câu 35. Khối lập phương thuộc loại
A. {4; 3}.
B. {5; 3}.

C. {3; 4}.

D. {3; 3}.

2

Câu 36. [3] Biết rằng giá trị lớn nhất của hàm số y =
số tự nhiên. Tính S = m2 + 2n3
A. S = 135.

B. S = 22.
Câu 37. Khối đa diện đều loại {4; 3} có số mặt
A. 10.
B. 8.


4n2 + 1 − n + 2
Câu 38. Tính lim
bằng
2n − 3
3
A. .
B. 2.
2

ln x
m
trên đoạn [1; e3 ] là M = n , trong đó n, m là các
x
e

C. S = 24.

D. S = 32.

C. 6.

D. 12.

C. +∞.


D. 1.

Câu 39. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18. √
A. 8.
B. 9.
C. 27.
D. 3 3.
Trang 3/10 Mã đề 1


Câu 40. Vận tốc chuyển động của máy bay là v(t) = 6t2 + 1(m/s). Hỏi quãng đường máy bay bay từ giây
thứ 5 đến giây thứ 15 là bao nhiêu?
A. 6510 m.
B. 1134 m.
C. 1202 m.
D. 2400 m.
Câu 41. Khối đa diện loại {3; 4} có tên gọi là gì?
A. Khối bát diện đều. B. Khối 12 mặt đều.

C. Khối tứ diện đều.

D. Khối lập phương.
!
3n + 2
2
Câu 42. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim
+ a − 4a = 0. Tổng các phần tử
n+2
của S bằng

A. 3.
B. 2.
C. 5.
D. 4.
Câu 43. [2] Tích tất cả các nghiệm của phương trình (1 + log2 x) log4 (2x) = 2 bằng
1
1
1
C. .
D. .
A. 4.
B. .
8
2
4
Câu 44. [3-1224d] Tìm tham số thực m để phương trình log23 x + log3 x + m = 0 có nghiệm
1
1
1
1
A. m < .
B. m > .
C. m ≥ .
D. m ≤ .
4
4
4
4
x
x

x
Câu 45. [3-12211d] Số nghiệm của phương trình 12.3 + 3.15 − 5 = 20 là
A. 3.
B. Vô nghiệm.
C. 1.
D. 2.
Câu 46. Giá trị của lim (3x2 − 2x + 1)
x→1

A. 2.

B. +∞.

C. 3.

D. 1.

Câu 47. Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy
một góc 45◦ và AB = 3a, BC = 4a. Thể tích khối chóp S .ABCD là

3
10a
3
A. 40a3 .
B. 10a3 .
C. 20a3 .
D.
.
3
d = 90◦ , ABC

d = 30◦ ; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC).
Câu 48. Cho hình chóp S .ABC có BAC
Thể tích√khối chóp S .ABC là



a3 3
a3 3
a3 2
2
.
B.
.
C. 2a 2.
.
A.
D.
24
12
24
2−n
Câu 49. Giá trị của giới hạn lim
bằng
n+1
A. 2.
B. 1.
C. −1.
D. 0.
Câu 50. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 6 đỉnh, 12 cạnh, 8 mặt.

B. 8 đỉnh, 12 cạnh, 6 mặt.
C. 4 đỉnh, 12 cạnh, 4 mặt.
D. 8 đỉnh, 12 cạnh, 8 mặt.
Câu 51. [12212d] Số nghiệm của phương trình 2 x−3 .3 x−2 − 2.2 x−3 − 3.3 x−2 + 6 = 0 là
A. Vơ nghiệm.
B. 1.
C. 2.
D. 3.
Câu 52. Tính lim
x→1

A. −∞.

x3 − 1
x−1

B. 0.

Câu 53. [1] Đạo hàm của làm số y = log x là
1
1
A.
.
B. y0 = .
10 ln x
x

C. +∞.
C. y0 =


D. 3.
1
.
x ln 10

D. y0 =

Câu 54. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x f (x )− √
2

A. 4.

B. −1.

C. 6.

3

ln 10
.
x
Z

6
3x + 1

. Tính

1


f (x)dx.
0

D. 2.
Trang 4/10 Mã đề 1


log 2x

Câu 55. [3-1229d] Đạo hàm của hàm số y =
x2
1 − 2 ln 2x
1 − 4 ln 2x
1
A. y0 = 3
.
B. y0 =
.
C. y0 = 3
.
3
x ln 10
2x ln 10
2x ln 10
Câu 56. Thập nhị diện đều (12 mặt đều) thuộc loại
A. {3; 3}.
B. {5; 3}.
C. {3; 4}.

D. y0 =


1 − 2 log 2x
.
x3

D. {4; 3}.

Câu 57. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1 + 3i| = |z − 3 − 5i|. Tìm giá trị nhỏ
nhất của |z + 2 + i|




12 17
A. 68.
B.
.
C. 5.
D. 34.
17
4x + 1
Câu 58. [1] Tính lim
bằng?
x→−∞ x + 1
A. 4.
B. −1.
C. 2.
D. −4.
Câu 59. [2-c] Giá trị nhỏ nhất của hàm số y = (x2 − 2)e2x trên đoạn [−1; 2] là
A. 2e4 .

B. 2e2 .
C. −e2 .
D. −2e2 .
Câu 60. [1] Giá trị của biểu thức 9log3 12 bằng
A. 2.
B. 24.

C. 144.

D. 4.

Câu 61. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm. Biết rằng nếu
khơng rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu. Sau 5 năm
mới rút lãi thì người đó thu được số tiền lãi là
A. 20, 128 triệu đồng. B. 3, 5 triệu đồng.
C. 50, 7 triệu đồng.
D. 70, 128 triệu đồng.
Câu 62. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A. 4 đỉnh, 6 cạnh, 4 mặt. B. 6 đỉnh, 6 cạnh, 4 mặt. C. 4 đỉnh, 8 cạnh, 4 mặt. D. 3 đỉnh, 3 cạnh, 3 mặt.
Câu 63. Cho hàm số y = x3 − 3x2 + 1. Tích giá trị cực đại và giá trị cực tiểu là
A. 3.
B. 0.
C. −3.
D. −6.
Câu 64. Trong các mệnh đề dưới đây, mệnh đề nào
! sai?
un
= +∞.
A. Nếu lim un = a > 0 và lim vn = 0 thì lim
vn !

un
B. Nếu lim un = a , 0 và lim vn = ±∞ thì lim
= 0.
vn
C. Nếu lim un = +∞ và lim vn = a > 0 thì lim(un vn ) = +∞.
!
un
D. Nếu lim un = a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim
= −∞.
vn
Câu 65. Trong các khẳng định sau, khẳng định nào sai?
A. Z
F(x) = 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2 x.
u0 (x)
B.
dx = log |u(x)| + C.
u(x)
C. Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x) + C, với C là hằng số.
D. F(x) = 5 − cos x là một nguyên hàm của hàm số f (x) = sin x.
Câu 66. [1] Tập xác định của hàm số y = 4 x +x−2 là
A. D = (−2; 1).
B. D = R \ {1; 2}.
C. D = [2; 1].

D. D = R.

Câu 67. Khối đa diện đều loại {3; 4} có số đỉnh
A. 6.
B. 8.


D. 4.

2

C. 10.

Câu 68. [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
Trang 5/10 Mã đề 1


(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b].
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b].
A. 1.

B. 2.

C. 3.

D. 4.

Câu 69. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó.
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó.
Trong hai khẳng định trên
A. Chỉ có (II) đúng.
B. Cả hai đều đúng.


C. Chỉ có (I) đúng.

D. Cả hai đều sai.

Câu 70. [1] Tập
! xác định của hàm số y != log3 (2x + 1) là
!
1
1
1
A. − ; +∞ .
B. −∞; − .
C. −∞; .
2
2
2

!
1
D.
; +∞ .
2

Câu 71.
!0 nào sau đây sai?
Z Mệnh đề
A.
f (x)dx = f (x).
B. F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F 0 (x) = f (x), ∀x ∈ (a;Zb).
C. Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì


f (x)dx = F(x) + C.

D. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
Câu 72. Cho tứ diện ABCD có thể tích bằng 12. G là trọng tâm của tam giác BCD. Tính thể tích V của
khối chóp A.GBC
A. V = 6.
B. V = 4.
C. V = 5.
D. V = 3.

Câu 73. [2] Cho hình chóp S .ABCD có đáy ABCD là hình chữ nhật với AB = a 2 và BC = a. Cạnh bên
S A vng góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ . Khoảng cách từ điểm C đến mặt phẳng
(S BD) √
bằng


3a 38
3a 58
3a
a 38
.
B.
.
C.
.
D.
.
A.
29

29
29
29
Câu 74. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng. Theo thỏa thuận cứ mỗi tháng
người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có
thể trả dưới 5 triệu). Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng.
A. 23.
B. 22.
C. 24.
D. 21.

Câu 75. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và a x = by = ab.
Giá trị
" nhỏ! nhất của biểu thức P" = x!+ 2y thuộc tập nào dưới đây?
5
5
A.
;3 .
B. 2; .
C. (1; 2).
D. [3; 4).
2
2
x−1
Câu 76. [3-1214d] Cho hàm số y =
có đồ thị (C). Gọi I là giao điểm của hai tiệm cận của (C). Xét
x+2
tam giác
B thuộc (C), đoạn thẳng AB có độ dài bằng


√ đều ABI có hai đỉnh A, √
A. 2 2.
B. 2 3.
C. 2.
D. 6.
!x
1
1−x
Câu 77. [2] Tổng các nghiệm của phương trình 3 = 2 +

9
A. − log2 3.
B. 1 − log2 3.
C. − log3 2.
D. log2 3.
Trang 6/10 Mã đề 1


Câu 78. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A. Đường phân giác góc phần tư thứ nhất.
B. Hai đường phân giác y = x và y = −x của các góc tọa độ.
C. Trục ảo.
D. Trục thực.
Câu 79.
! định nào sau đây là sai?
Z Các khẳng
0

f (x)dx = f (x).


A.
Z
C.

f (x)dx = F(x) + C ⇒

Z
B.

Z

f (t)dt = F(t) + C. D.

Z

Z

f (x)dx = F(x) +C ⇒
f (u)dx = F(u) +C.
Z
k f (x)dx = k
f (x)dx, k là hằng số.

Câu 80. Khối đa diện đều loại {3; 5} có số đỉnh
A. 30.
B. 12.

C. 8.

D. 20.


Câu 81. Giá trị giới hạn lim (x2 − x + 7) bằng?
x→−1
A. 9.
B. 5.

C. 0.

D. 7.

Câu 82. [4-c] Xét các số thực dương x, y thỏa mãn 2 x + 2y = 4. Khi đó, giá trị lớn nhất của biểu thức
P = (2x2 + y)(2y2 + x) + 9xy là
27
.
A. 12.
B. 27.
C. 18.
D.
2
Câu 83. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập
vào vốn. Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng. (Biết rằng
lãi suất không thay đổi).
A. 9 năm.
B. 10 năm.
C. 7 năm.
D. 8 năm.
Câu 84. Phát biểu nào trong các phát biểu sau là đúng?
A. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại điểm đó.
B. Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó.
C. Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó.

D. Nếu hàm số có đạo hàm tại x0 thì hàm số liên tục tại −x0 .
Câu 85. [2] Cho hình chóp S .ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a. Khoảng cách
giữa hai√đường thẳng BD và S C bằng



a 6
a 6
a 6
.
B. a 6.
C.
.
D.
.
A.
2
3
6
1
a
Câu 86. [2] Cho hàm số y = log3 (3 x + x), biết y0 (1) = +
, với a, b ∈ Z. Giá trị của a + b là
4 b ln 3
A. 1.
B. 2.
C. 7.
D. 4.
Câu 87. Hàm số y = x3 − 3x2 + 3x − 4 có bao nhiêu cực trị?
A. 0.

B. 1.
C. 2.

D. 3.

Câu 88. Khối đa diện loại {5; 3} có tên gọi là gì?
A. Khối 20 mặt đều.
B. Khối 12 mặt đều.

D. Khối tứ diện đều.

C. Khối bát diện đều.

Câu 89. [3-1212h] Cho hình lập phương ABCD.A0 B0C 0 D0 , gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C 0 . Tính tỉ số thể tích k của khối tứ diện GA0 B0C 0 với khối lập phương
ABCD.A0 B0C 0 D0
1
1
1
1
A. k = .
B. k = .
C. k = .
D. k = .
15
9
6
18
t
9

Câu 90. [4] Xét hàm số f (t) = t
, với m là tham số thực. Gọi S là tập tất cả các giá trị của m sao cho
9 + m2
f (x) + f (y) = 1, với mọi số thực x, y thỏa mãn e x+y ≤ e(x + y). Tìm số phần tử của S .
A. 0.
B. Vô số.
C. 2.
D. 1.
Trang 7/10 Mã đề 1


Câu 91. [2] Cho hàm số f (x) = ln(x4 + 1). Giá trị f 0 (1) bằng
1
ln 2
.
B. 2.
C. .
A.
2
2
1
Câu 92. [1] Giá trị của biểu thức log √3
bằng
10
1
1
A. 3.
B. .
C. − .
3

3
Câu 93. [2] Đạo hàm của hàm số y = x ln x là
A. y0 = 1 − ln x.
B. y0 = 1 + ln x.
C. y0 = ln x − 1.

D. y0 = x + ln x.

Câu 94. [2] Tổng các nghiệm của phương trình 2 x +2x = 82−x là
A. 5.
B. −6.
C. 6.

D. −5.

D. 1.

D. −3.

2

Câu 95. Cho khối chóp có đáy là n−giác. Mệnh đề nào sau đây là đúng?
A. Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B. Số đỉnh của khối chóp bằng số mặt của khối chóp.
C. Số cạnh của khối chóp bằng số mặt của khối chóp.
D. Số đỉnh của khối chóp bằng số cạnh của khối chóp.
1
Câu 96. Hàm số y = x + có giá trị cực đại là
x
A. 2.

B. 1.

C. −1.

D. −2.

Câu 97. [1] Hàm số nào đồng biến trên khoảng (0; +∞)?
A. y = log √2 x.
B. y = log π4 x.

C. y = loga x trong đó a = 3 − 2.
D. y = log 14 x.
Câu 98. Tính lim
x→5

2
A. − .
5

x2 − 12x + 35
25 − 5x
2
B. .
5

C. +∞.

D. −∞.

Câu 99. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm. Biết rằng nếu không

rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho
tháng tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban
đầu, giả định trong thời gian này lãi suất khơng đổi và người đó không rút tiền ra?
A. 13 năm.
B. 11 năm.
C. 10 năm.
D. 12 năm.
2

Câu 100. [2] Tổng các nghiệm của phương trình 3 x−1 .2 x = 8.4 x−2 là
A. 1 − log3 2.
B. 1 − log2 3.
C. 3 − log2 3.
D. 2 − log2 3.

x2 + 3x + 5
Câu 101. Tính giới hạn lim
x→−∞
4x − 1
1
1
A. .
B. − .
C. 1.
D. 0.
4
4
Câu 102. Cho hàm số y = −x3 + 3x2 − 4. Mệnh đề nào dưới đây đúng?
A. Hàm số đồng biến trên khoảng (0; +∞).
B. Hàm số đồng biến trên khoảng (0; 2).

C. Hàm số nghịch biến trên khoảng (0; 2).
D. Hàm số nghịch biến trên khoảng (−∞; 2).
Câu 103. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x). Xét các
mệnh đề sau
(I) F(x) + G(x) là một nguyên hàm của f (x) + g(x).
(II) kF(x) là một nguyên hàm của k f (x).
Trang 8/10 Mã đề 1


(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x).
Các mệnh đề đúng là
A. (I) và (III).

B. (I) và (II).

C. Cả ba mệnh đề.

D. (II) và (III).

!

Câu 104. [2] Phương trình log x 4 log2
A. 2.

B. 1.

5 − 12x
= 2 có bao nhiêu nghiệm thực?
12x − 8
C. 3.

D. Vơ nghiệm.

Câu 105. [1] Cho a là số thực dương tùy ý khác 1. Mệnh đề nào dưới đây đúng?
1
1
A. log2 a = loga 2.
B. log2 a = − loga 2.
C. log2 a =
.
D. log2 a =
.
loga 2
log2 a
Câu 106. Điểm cực đại của đồ thị hàm số y = 2x3 − 3x2 − 2 là
A. (2; 2).
B. (−1; −7).
C. (1; −3).

D. (0; −2).

Câu 107. Cho hai hàm y = f (x), y = Z
g(x) có đạo hàm
Z trên R. Phát biểu nào sau đây đúng?
A. Nếu f (x) = g(x) + 1, ∀x ∈ R thì
f 0 (x)dx =
g0 (x)dx.
Z
Z
B. Nếu
f (x)dx =

g(x)dx thì f (x) , g(x), ∀x ∈ R.
Z
Z
C. Nếu
f (x)dx =
g(x)dx thì f (x) = g(x), ∀x ∈ R.
Z
Z
D. Nếu
f 0 (x)dx =
g0 (x)dx thì f (x) = g(x), ∀x ∈ R.


Câu 108. [2] Phương trình log4 (x + 1)2 + 2 = log √2 4 − x + log8 (4 + x)3 có tất cả bao nhiêu nghiệm?
A. Vô nghiệm.
B. 1 nghiệm.
C. 2 nghiệm.
D. 3 nghiệm.
Câu 109. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
A. 3 mặt.
B. 4 mặt.
C. 6 mặt.
D. 9 mặt.
Câu 110. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3 + bx2 + cx + d. Tính giá
trị của hàm số tại x = −2.
A. y(−2) = 6.
B. y(−2) = −18.
C. y(−2) = 2.
D. y(−2) = 22.
Câu 111. [3-1122d] Trong kỳ thi THPTQG có mơn thi bắt buộc là mơn Tốn. Mơn thi này dưới hình thức

trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng. Mỗi câu trả lời đúng
được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm. Bạn An học kém mơn Tốn nên quyết định chọn
ngẫu nhiên hết 50 câu trả lời. Xác suất để bạn An đạt 4 điểm mơn Tốn là
C 40 .(3)10
C 20 .(3)30
C 10 .(3)40
C 20 .(3)20
A. 50 50 .
B. 50 50 .
C. 50 50 .
D. 50 50 .
4
4
4
4
x+1
Câu 112. Tính lim
bằng
x→−∞ 6x − 2
1
1
1
A. .
B. .
C. .
D. 1.
6
3
2
Câu 113. Khối đa diện loại {3; 3} có tên gọi là gì?

A. Khối bát diện đều. B. Khối tứ diện đều.
C. Khối lập phương.
D. Khối 12 mặt đều.
Câu 114. [2D4-4] Cho số phức z thỏa mãn |z + z| + 2|z − z| = 2 và z1 thỏa mãn |z1 − 2 − i| = 2. Diện tích
hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
A. 0, 5.
B. 0, 2.
C. 0, 3.
D. 0, 4.
d = 30◦ , biết S BC là tam giác đều
Câu 115. [3] Cho hình chóp S .ABC có đáy là tam giác vng tại A, ABC
cạnh a √
và mặt bên (S BC) vng √
góc với mặt đáy. Khoảng cách
√ từ C đến (S AB) bằng√
a 39
a 39
a 39
a 39
A.
.
B.
.
C.
.
D.
.
13
16
9

26
Trang 9/10 Mã đề 1


Câu 116. Mặt phẳng (AB0C 0 ) chia khối lăng trụ ABC.A0 B0C 0 thành các khối đa diện nào?
A. Hai khối chóp tứ giác.
B. Một khối chóp tam giác, một khối chóp tứ giác.
C. Một khối chóp tam giác, một khối chóp ngữ giác.
D. Hai khối chóp tam giác.
3
2
Câu 117. Giá
√ trị cực đại của hàm số y√= x − 3x − 3x + 2 √
B. −3 + 4 2.
C. 3 − 4 2.
A. −3 − 4 2.


D. 3 + 4 2.

Câu 118. [3-1122h] Cho hình lăng trụ ABC.A0 B0C 0 có đáy là tam giác đều cạnh a. Hình chiếu vng góc
0
của A0 lên
√ mặt phẳng (ABC) trung với tâm của tam giác ABC. Biết khoảng cách giữa đường thẳng AA và
a 3
BC là
. Khi đó thể tích khối lăng trụ là
4





a3 3
a3 3
a3 3
a3 3
.
B.
.
C.
.
D.
.
A.
24
36
6
12
Câu 119. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của

A. Tăng lên n lần.
B. Giảm đi n lần.
C. Không thay đổi.
D. Tăng lên (n − 1) lần.
Câu 120. [1] Tập nghiệm của phương trình log2 (x2 − 6x + 7) = log2 (x − 3) là
A. {3}.
B. {5; 2}.
C. {5}.
D. {2}.
Câu 121. Giá trị cực đại của hàm số y = x3 − 3x + 4 là

A. −1.
B. 2.
C. 1.

D. 6.

Câu 122. Cho lăng trụ đều ABC.A0 B0C 0 có cạnh đáy bằng a. Cạnh bên bằng 2a. Thể tích khối lăng trụ
ABC.A0 B0C 0 là


a3
a3 3
a3 3
3
A.
.
B.
.
C. a .
D.
.
3
2
6
Câu 123. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π]. Gọi M, m lần lượt là giá trị lớn nhất, giá trị
nhỏ nhất
√ của hàm số. Khi đó tổng
√M + m

A. 8 2.

B. 8 3.
C. 7 3.
D. 16.
Câu 124. Cho hình chóp S .ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S B hợp √
với đáy một góc 60◦ . Thể √
tích khối chóp S .ABC là √

3
3
a 6
a3 6
a3 3
a 6
.
B.
.
C.
.
D.
.
A.
24
8
48
24
Z 2
ln(x + 1)
Câu 125. Cho
dx = a ln 2 + b ln 3, (a, b ∈ Q). Tính P = a + 4b

x2
1
A. 1.
B. 3.
C. 0.
D. −3.
Câu 126. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f 0 (x) = |x − 1|. Biết f (0) = 3.
Tính f (2) + f (4)?
A. 11.
B. 12.
C. 4.
D. 10.
Câu 127. Cho hình chóp S .ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với
đáy (ABC) một góc bằng 60◦ . Thể√tích khối chóp S .ABC là √

a3
a3 3
a3 3
a3 3
A.
.
B.
.
C.
.
D.
.
4
4
8

12
Câu 128. Khối đa diện đều loại {3; 3} có số cạnh
A. 5.
B. 4.
C. 6.
D. 8.
Câu 129. Tìm m để hàm số y = mx3 + 3x2 + 12x + 2 đạt cực đại tại x = 2
A. m = −1.
B. m = 0.
C. m = −3.

D. m = −2.
Trang 10/10 Mã đề 1


Câu 130. Hàm số y = 2x3 + 3x2 + 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
A. (−∞; −1) và (0; +∞). B. (−1; 0).
C. (−∞; 0) và (1; +∞). D. (0; 1).
- - - - - - - - - - HẾT- - - - - - - - - -

Trang 11/10 Mã đề 1


ĐÁP ÁN
BẢNG ĐÁP ÁN CÁC MÃ ĐỀ
Mã đề thi 1
1. A

2.
C


3.
5.

C

4. A
6.

D

7. A

8.

D

9. A

10.

C

12.

C

D

D


11.
13. A

14.
C

15.
17. A
19.

B

21.

D

23. A
25.
C

29.
33.

B

35. A
C

39.


D

D

20.

C

22.

C

24.

C

32.

C

34.

C

36.

D

38.


D

D

42.

D

44.

D

45.

C

46. A

47.

C

48.

49.

C

50.


51.

C

52.

53.

C

54. A

55. A
57.

56.
B

59.

D
B
D
B

58. A
60.

C


61. A

C

62. A

63.
65.

D

40. A

41. A
43.

18.

30. A

C

37.

D

28. A
D


31.

16.

26.

D

27.

B

64. A

C

66.

B

67. A

68.
1

D
C


69. A


70. A
72.

B

74.

B

75. A

76.

B

77. A

78.

B

80.

B

71.

B


73.

79.

C

B

81. A

82.

83. A

84. A

85.

D

C
C

86.

87. A

88.

B


90.

C

91.

B

92.

C

93.

B
B

94.

D

95.

96.

D

97. A


98.

99.

B

100.

D

D

101.

B
B

102.

B

103.

104.

B

105.

C


107.

C

106.

D
C

108.
110.

109. A
111.

B

112. A

113.

114.
116.

C
D

120.
122.


C
B

124. A
126.

B

128.
130.

B

115. A

B

118.

D

117.

B

119.

B


121.

D

123.

D

125.

D

127.
129.

C
B

2

C
D



Tài liệu bạn tìm kiếm đã sẵn sàng tải về

Tải bản đầy đủ ngay
×